layoutlm-funsd-tf / README.md
Matt6450's picture
Training in progress epoch 7
5c98b8f
|
raw
history blame
2.72 kB
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: Matt6450/layoutlm-funsd-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Matt6450/layoutlm-funsd-tf
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2719
- Validation Loss: 0.6616
- Train Overall Precision: 0.7394
- Train Overall Recall: 0.7858
- Train Overall F1: 0.7619
- Train Overall Accuracy: 0.8104
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.6975 | 1.4623 | 0.2206 | 0.2464 | 0.2328 | 0.4665 | 0 |
| 1.1784 | 0.8850 | 0.5696 | 0.6754 | 0.6180 | 0.7376 | 1 |
| 0.7831 | 0.7326 | 0.6444 | 0.7511 | 0.6937 | 0.7690 | 2 |
| 0.5823 | 0.6434 | 0.7028 | 0.7642 | 0.7322 | 0.7930 | 3 |
| 0.4477 | 0.6255 | 0.7062 | 0.7998 | 0.7501 | 0.8006 | 4 |
| 0.3644 | 0.6378 | 0.7339 | 0.7903 | 0.7611 | 0.8174 | 5 |
| 0.3135 | 0.6776 | 0.7324 | 0.7787 | 0.7549 | 0.8006 | 6 |
| 0.2719 | 0.6616 | 0.7394 | 0.7858 | 0.7619 | 0.8104 | 7 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1