layoutlm-funsd-tf / README.md
Matt6450's picture
Upload TFLayoutLMForTokenClassification
1700f4a verified
|
raw
history blame
2.7 kB
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# layoutlm-funsd-tf
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2432
- Validation Loss: 0.6612
- Train Overall Precision: 0.7578
- Train Overall Recall: 0.8068
- Train Overall F1: 0.7815
- Train Overall Accuracy: 0.8138
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.7342 | 1.4482 | 0.1509 | 0.1219 | 0.1349 | 0.4614 | 0 |
| 1.2368 | 0.9387 | 0.5360 | 0.6417 | 0.5842 | 0.7187 | 1 |
| 0.8113 | 0.7147 | 0.6413 | 0.7240 | 0.6802 | 0.7733 | 2 |
| 0.5923 | 0.6811 | 0.6843 | 0.7657 | 0.7227 | 0.7861 | 3 |
| 0.4557 | 0.6419 | 0.7102 | 0.7918 | 0.7488 | 0.8010 | 4 |
| 0.3524 | 0.6118 | 0.7285 | 0.8023 | 0.7636 | 0.8163 | 5 |
| 0.3015 | 0.6499 | 0.7338 | 0.8008 | 0.7658 | 0.8081 | 6 |
| 0.2432 | 0.6612 | 0.7578 | 0.8068 | 0.7815 | 0.8138 | 7 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1