|
---
|
|
license: apache-2.0
|
|
base_model: google/vit-base-patch16-224-in21k
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
- f1
|
|
- precision
|
|
- recall
|
|
model-index:
|
|
- name: VIT-ASVspoof5-Mel_Spectrogram-Synthetic-Voice-Detection
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: validation
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.7633416105001773
|
|
- name: F1
|
|
type: f1
|
|
value: 0.8263822744093812
|
|
- name: Precision
|
|
type: precision
|
|
value: 0.9621029413546957
|
|
- name: Recall
|
|
type: recall
|
|
value: 0.7242190921033426
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# VIT-ASVspoof5-Mel_Spectrogram-Synthetic-Voice-Detection
|
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 2.0728
|
|
- Accuracy: 0.7633
|
|
- F1: 0.8264
|
|
- Precision: 0.9621
|
|
- Recall: 0.7242
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 3.0
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
|
| 0.0047 | 1.0 | 22795 | 0.9664 | 0.8373 | 0.8919 | 0.9221 | 0.8637 |
|
|
| 0.0064 | 2.0 | 45590 | 1.6013 | 0.7830 | 0.8421 | 0.9701 | 0.7439 |
|
|
| 0.0 | 3.0 | 68385 | 2.0728 | 0.7633 | 0.8264 | 0.9621 | 0.7242 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.44.0
|
|
- Pytorch 2.4.0+cu124
|
|
- Datasets 2.21.0
|
|
- Tokenizers 0.19.1
|
|
|