MaziyarPanahi's picture
Adding Evaluation Results (#5)
6118643 verified
metadata
license: agpl-3.0
tags:
  - merge
  - wizardlm
  - mique
pipeline_tag: text-generation
model-index:
  - name: WizardLM-Math-70B-v0.1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 67.06
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 86.01
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 69.14
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 57.07
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 81.77
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.44
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1
          name: Open LLM Leaderboard

Examples

There are three killers in a room. Someone enters the room and kills one of them. Nobody leaves the room. How many killers are left in the room? Explain your reasoning step by step.

Step 1: Identify the initial situation
There are three killers in a room, which we can label as A, B, and C.

Step 2: Describe the event
Someone (let's call this person D) enters the room and kills one of the killers. For the sake of simplicity, let's say that Killer A is killed.

Step 3: Analyze the new situation
After the event, there are now two killers left in the room: B and C. The person who entered the room, D, is also still present. However, since D did not leave the room after killing A, it means that D is also a killer. Therefore, there are actually three killers in the room: B, C, and D.

Final Answer: After the event, there are three killers left in the room: B, C, and D.

Mark is faster than Mary , Mary is faster than Joe. Is Joe faster than Mark? Let's think step by step

Step 1: Understand the given information
We know that Mark is faster than Mary, and Mary is faster than Joe. This means that Mark is the fastest among the three, followed by Mary, and then Joe.

Step 2: Analyze the question
The question asks if Joe is faster than Mark. Based on the given information, we can conclude that Joe is not faster than Mark. In fact, Mark is faster than Joe.

Final Answer: No, Joe is not faster than Mark.

If I lay 2 wet shirts out in the sun flat on the ground to dry and it takes 5 hours until they are dry, how long would it take to dry 4 shirts of the same type that way simultanously?

The time taken for a shirt to dry depends on several factors such as the material of the shirt, the humidity, temperature, wind speed, etc. However, if we assume that all four shirts have similar properties and the weather conditions remain constant, then you can expect the drying time to be proportional to the number of shirts.

In other words, if two shirts take 5 hours to dry, then four shirts will likely take twice as long, or 10 hours. This is because there is more fabric to dry, which means it will absorb more water from the air, thus taking longer to reach equilibrium with the surrounding environment.

However, this is just an estimate, and the actual drying time may vary depending on the specific circumstances.

Wrong, it takes the same amount of time!

explain step by step 25-4*2+3=?

Step 1: Perform the multiplication operation first.
25 - 4 * 2 + 3 = 25 - 8 + 3

Step 2: Now, perform the subtraction and addition operations from left to right.
25 - 8 + 3 = 17 + 3

Step 3: Finally, perform the remaining addition operation.
17 + 3 = 20

So, 25-4*2+3 equals 20.

Eval

WizardLM/WizardLM-70B-V1.0 vs. MaziyarPanahi/WizardLM-Math-70B-v0.1

image/png

Leaderboard

{
    "all": {
        "acc": 0.6914116069568377,
        "acc_stderr": 0.03063431437342948,
        "acc_norm": 0.6938613221179539,
        "acc_norm_stderr": 0.031238741076549784,
        "mc1": 0.40269277845777235,
        "mc1_stderr": 0.01716883093518722,
        "mc2": 0.5707095526544473,
        "mc2_stderr": 0.01525040450448649
    },
    "harness|arc:challenge|25": {
        "acc": 0.6322525597269625,
        "acc_stderr": 0.014090995618168482,
        "acc_norm": 0.6706484641638225,
        "acc_norm_stderr": 0.013734057652635474
    },
    "harness|hellaswag|10": {
        "acc": 0.6746664011153157,
        "acc_stderr": 0.0046754187743142306,
        "acc_norm": 0.8600876319458275,
        "acc_norm_stderr": 0.0034618713240671846
    },
    "harness|hendrycksTest-abstract_algebra|5": {
        "acc": 0.34,
        "acc_stderr": 0.04760952285695236,
        "acc_norm": 0.34,
        "acc_norm_stderr": 0.04760952285695236
    },
    "harness|hendrycksTest-anatomy|5": {
        "acc": 0.6518518518518519,
        "acc_stderr": 0.041153246103369526,
        "acc_norm": 0.6518518518518519,
        "acc_norm_stderr": 0.041153246103369526
    },
    "harness|hendrycksTest-astronomy|5": {
        "acc": 0.7894736842105263,
        "acc_stderr": 0.03317672787533157,
        "acc_norm": 0.7894736842105263,
        "acc_norm_stderr": 0.03317672787533157
    },
    "harness|hendrycksTest-business_ethics|5": {
        "acc": 0.73,
        "acc_stderr": 0.04461960433384741,
        "acc_norm": 0.73,
        "acc_norm_stderr": 0.04461960433384741
    },
    "harness|hendrycksTest-clinical_knowledge|5": {
        "acc": 0.7283018867924528,
        "acc_stderr": 0.027377706624670713,
        "acc_norm": 0.7283018867924528,
        "acc_norm_stderr": 0.027377706624670713
    },
    "harness|hendrycksTest-college_biology|5": {
        "acc": 0.8194444444444444,
        "acc_stderr": 0.032166008088022675,
        "acc_norm": 0.8194444444444444,
        "acc_norm_stderr": 0.032166008088022675
    },
    "harness|hendrycksTest-college_chemistry|5": {
        "acc": 0.5,
        "acc_stderr": 0.050251890762960605,
        "acc_norm": 0.5,
        "acc_norm_stderr": 0.050251890762960605
    },
    "harness|hendrycksTest-college_computer_science|5": {
        "acc": 0.57,
        "acc_stderr": 0.049756985195624284,
        "acc_norm": 0.57,
        "acc_norm_stderr": 0.049756985195624284
    },
    "harness|hendrycksTest-college_mathematics|5": {
        "acc": 0.37,
        "acc_stderr": 0.04852365870939099,
        "acc_norm": 0.37,
        "acc_norm_stderr": 0.04852365870939099
    },
    "harness|hendrycksTest-college_medicine|5": {
        "acc": 0.6878612716763006,
        "acc_stderr": 0.035331333893236574,
        "acc_norm": 0.6878612716763006,
        "acc_norm_stderr": 0.035331333893236574
    },
    "harness|hendrycksTest-college_physics|5": {
        "acc": 0.35294117647058826,
        "acc_stderr": 0.047551296160629475,
        "acc_norm": 0.35294117647058826,
        "acc_norm_stderr": 0.047551296160629475
    },
    "harness|hendrycksTest-computer_security|5": {
        "acc": 0.7,
        "acc_stderr": 0.046056618647183814,
        "acc_norm": 0.7,
        "acc_norm_stderr": 0.046056618647183814
    },
    "harness|hendrycksTest-conceptual_physics|5": {
        "acc": 0.676595744680851,
        "acc_stderr": 0.030579442773610337,
        "acc_norm": 0.676595744680851,
        "acc_norm_stderr": 0.030579442773610337
    },
    "harness|hendrycksTest-econometrics|5": {
        "acc": 0.40350877192982454,
        "acc_stderr": 0.046151869625837026,
        "acc_norm": 0.40350877192982454,
        "acc_norm_stderr": 0.046151869625837026
    },
    "harness|hendrycksTest-electrical_engineering|5": {
        "acc": 0.5793103448275863,
        "acc_stderr": 0.04113914981189261,
        "acc_norm": 0.5793103448275863,
        "acc_norm_stderr": 0.04113914981189261
    },
    "harness|hendrycksTest-elementary_mathematics|5": {
        "acc": 0.4497354497354497,
        "acc_stderr": 0.02562085704293665,
        "acc_norm": 0.4497354497354497,
        "acc_norm_stderr": 0.02562085704293665
    },
    "harness|hendrycksTest-formal_logic|5": {
        "acc": 0.46825396825396826,
        "acc_stderr": 0.04463112720677172,
        "acc_norm": 0.46825396825396826,
        "acc_norm_stderr": 0.04463112720677172
    },
    "harness|hendrycksTest-global_facts|5": {
        "acc": 0.46,
        "acc_stderr": 0.05009082659620332,
        "acc_norm": 0.46,
        "acc_norm_stderr": 0.05009082659620332
    },
    "harness|hendrycksTest-high_school_biology|5": {
        "acc": 0.8129032258064516,
        "acc_stderr": 0.022185710092252252,
        "acc_norm": 0.8129032258064516,
        "acc_norm_stderr": 0.022185710092252252
    },
    "harness|hendrycksTest-high_school_chemistry|5": {
        "acc": 0.5369458128078818,
        "acc_stderr": 0.035083705204426656,
        "acc_norm": 0.5369458128078818,
        "acc_norm_stderr": 0.035083705204426656
    },
    "harness|hendrycksTest-high_school_computer_science|5": {
        "acc": 0.79,
        "acc_stderr": 0.040936018074033256,
        "acc_norm": 0.79,
        "acc_norm_stderr": 0.040936018074033256
    },
    "harness|hendrycksTest-high_school_european_history|5": {
        "acc": 0.8363636363636363,
        "acc_stderr": 0.02888787239548795,
        "acc_norm": 0.8363636363636363,
        "acc_norm_stderr": 0.02888787239548795
    },
    "harness|hendrycksTest-high_school_geography|5": {
        "acc": 0.8686868686868687,
        "acc_stderr": 0.024063156416822502,
        "acc_norm": 0.8686868686868687,
        "acc_norm_stderr": 0.024063156416822502
    },
    "harness|hendrycksTest-high_school_government_and_politics|5": {
        "acc": 0.927461139896373,
        "acc_stderr": 0.018718998520678178,
        "acc_norm": 0.927461139896373,
        "acc_norm_stderr": 0.018718998520678178
    },
    "harness|hendrycksTest-high_school_macroeconomics|5": {
        "acc": 0.7025641025641025,
        "acc_stderr": 0.023177408131465953,
        "acc_norm": 0.7025641025641025,
        "acc_norm_stderr": 0.023177408131465953
    },
    "harness|hendrycksTest-high_school_mathematics|5": {
        "acc": 0.34814814814814815,
        "acc_stderr": 0.02904560029061626,
        "acc_norm": 0.34814814814814815,
        "acc_norm_stderr": 0.02904560029061626
    },
    "harness|hendrycksTest-high_school_microeconomics|5": {
        "acc": 0.7941176470588235,
        "acc_stderr": 0.02626502460827588,
        "acc_norm": 0.7941176470588235,
        "acc_norm_stderr": 0.02626502460827588
    },
    "harness|hendrycksTest-high_school_physics|5": {
        "acc": 0.4503311258278146,
        "acc_stderr": 0.04062290018683776,
        "acc_norm": 0.4503311258278146,
        "acc_norm_stderr": 0.04062290018683776
    },
    "harness|hendrycksTest-high_school_psychology|5": {
        "acc": 0.8954128440366973,
        "acc_stderr": 0.013120530245265593,
        "acc_norm": 0.8954128440366973,
        "acc_norm_stderr": 0.013120530245265593
    },
    "harness|hendrycksTest-high_school_statistics|5": {
        "acc": 0.5787037037037037,
        "acc_stderr": 0.03367462138896078,
        "acc_norm": 0.5787037037037037,
        "acc_norm_stderr": 0.03367462138896078
    },
    "harness|hendrycksTest-high_school_us_history|5": {
        "acc": 0.9166666666666666,
        "acc_stderr": 0.019398452135813905,
        "acc_norm": 0.9166666666666666,
        "acc_norm_stderr": 0.019398452135813905
    },
    "harness|hendrycksTest-high_school_world_history|5": {
        "acc": 0.8860759493670886,
        "acc_stderr": 0.020681745135884565,
        "acc_norm": 0.8860759493670886,
        "acc_norm_stderr": 0.020681745135884565
    },
    "harness|hendrycksTest-human_aging|5": {
        "acc": 0.757847533632287,
        "acc_stderr": 0.028751392398694755,
        "acc_norm": 0.757847533632287,
        "acc_norm_stderr": 0.028751392398694755
    },
    "harness|hendrycksTest-human_sexuality|5": {
        "acc": 0.8702290076335878,
        "acc_stderr": 0.029473649496907065,
        "acc_norm": 0.8702290076335878,
        "acc_norm_stderr": 0.029473649496907065
    },
    "harness|hendrycksTest-international_law|5": {
        "acc": 0.8181818181818182,
        "acc_stderr": 0.03520893951097655,
        "acc_norm": 0.8181818181818182,
        "acc_norm_stderr": 0.03520893951097655
    },
    "harness|hendrycksTest-jurisprudence|5": {
        "acc": 0.8148148148148148,
        "acc_stderr": 0.03755265865037181,
        "acc_norm": 0.8148148148148148,
        "acc_norm_stderr": 0.03755265865037181
    },
    "harness|hendrycksTest-logical_fallacies|5": {
        "acc": 0.7791411042944786,
        "acc_stderr": 0.03259177392742179,
        "acc_norm": 0.7791411042944786,
        "acc_norm_stderr": 0.03259177392742179
    },
    "harness|hendrycksTest-machine_learning|5": {
        "acc": 0.48214285714285715,
        "acc_stderr": 0.047427623612430116,
        "acc_norm": 0.48214285714285715,
        "acc_norm_stderr": 0.047427623612430116
    },
    "harness|hendrycksTest-management|5": {
        "acc": 0.8446601941747572,
        "acc_stderr": 0.03586594738573974,
        "acc_norm": 0.8446601941747572,
        "acc_norm_stderr": 0.03586594738573974
    },
    "harness|hendrycksTest-marketing|5": {
        "acc": 0.905982905982906,
        "acc_stderr": 0.019119892798924974,
        "acc_norm": 0.905982905982906,
        "acc_norm_stderr": 0.019119892798924974
    },
    "harness|hendrycksTest-medical_genetics|5": {
        "acc": 0.67,
        "acc_stderr": 0.047258156262526066,
        "acc_norm": 0.67,
        "acc_norm_stderr": 0.047258156262526066
    },
    "harness|hendrycksTest-miscellaneous|5": {
        "acc": 0.8697318007662835,
        "acc_stderr": 0.012036729568216054,
        "acc_norm": 0.8697318007662835,
        "acc_norm_stderr": 0.012036729568216054
    },
    "harness|hendrycksTest-moral_disputes|5": {
        "acc": 0.7774566473988439,
        "acc_stderr": 0.02239421566194282,
        "acc_norm": 0.7774566473988439,
        "acc_norm_stderr": 0.02239421566194282
    },
    "harness|hendrycksTest-moral_scenarios|5": {
        "acc": 0.5553072625698324,
        "acc_stderr": 0.016619881988177012,
        "acc_norm": 0.5553072625698324,
        "acc_norm_stderr": 0.016619881988177012
    },
    "harness|hendrycksTest-nutrition|5": {
        "acc": 0.7516339869281046,
        "acc_stderr": 0.024739981355113592,
        "acc_norm": 0.7516339869281046,
        "acc_norm_stderr": 0.024739981355113592
    },
    "harness|hendrycksTest-philosophy|5": {
        "acc": 0.77491961414791,
        "acc_stderr": 0.023720088516179027,
        "acc_norm": 0.77491961414791,
        "acc_norm_stderr": 0.023720088516179027
    },
    "harness|hendrycksTest-prehistory|5": {
        "acc": 0.7962962962962963,
        "acc_stderr": 0.02240967454730417,
        "acc_norm": 0.7962962962962963,
        "acc_norm_stderr": 0.02240967454730417
    },
    "harness|hendrycksTest-professional_accounting|5": {
        "acc": 0.5390070921985816,
        "acc_stderr": 0.029736592526424445,
        "acc_norm": 0.5390070921985816,
        "acc_norm_stderr": 0.029736592526424445
    },
    "harness|hendrycksTest-professional_law|5": {
        "acc": 0.5586701434159062,
        "acc_stderr": 0.012682016335646683,
        "acc_norm": 0.5586701434159062,
        "acc_norm_stderr": 0.012682016335646683
    },
    "harness|hendrycksTest-professional_medicine|5": {
        "acc": 0.7242647058823529,
        "acc_stderr": 0.027146271936625162,
        "acc_norm": 0.7242647058823529,
        "acc_norm_stderr": 0.027146271936625162
    },
    "harness|hendrycksTest-professional_psychology|5": {
        "acc": 0.761437908496732,
        "acc_stderr": 0.017242385828779627,
        "acc_norm": 0.761437908496732,
        "acc_norm_stderr": 0.017242385828779627
    },
    "harness|hendrycksTest-public_relations|5": {
        "acc": 0.7454545454545455,
        "acc_stderr": 0.041723430387053825,
        "acc_norm": 0.7454545454545455,
        "acc_norm_stderr": 0.041723430387053825
    },
    "harness|hendrycksTest-security_studies|5": {
        "acc": 0.7877551020408163,
        "acc_stderr": 0.026176967197866767,
        "acc_norm": 0.7877551020408163,
        "acc_norm_stderr": 0.026176967197866767
    },
    "harness|hendrycksTest-sociology|5": {
        "acc": 0.8805970149253731,
        "acc_stderr": 0.02292879327721974,
        "acc_norm": 0.8805970149253731,
        "acc_norm_stderr": 0.02292879327721974
    },
    "harness|hendrycksTest-us_foreign_policy|5": {
        "acc": 0.9,
        "acc_stderr": 0.030151134457776334,
        "acc_norm": 0.9,
        "acc_norm_stderr": 0.030151134457776334
    },
    "harness|hendrycksTest-virology|5": {
        "acc": 0.5602409638554217,
        "acc_stderr": 0.03864139923699122,
        "acc_norm": 0.5602409638554217,
        "acc_norm_stderr": 0.03864139923699122
    },
    "harness|hendrycksTest-world_religions|5": {
        "acc": 0.8596491228070176,
        "acc_stderr": 0.0266405825391332,
        "acc_norm": 0.8596491228070176,
        "acc_norm_stderr": 0.0266405825391332
    },
    "harness|truthfulqa:mc|0": {
        "mc1": 0.40269277845777235,
        "mc1_stderr": 0.01716883093518722,
        "mc2": 0.5707095526544473,
        "mc2_stderr": 0.01525040450448649
    },
    "harness|winogrande|5": {
        "acc": 0.8176795580110497,
        "acc_stderr": 0.010851565594267207
    },
    "harness|gsm8k|5": {
        "acc": 0.6444275966641395,
        "acc_stderr": 0.013185402252713852
    }
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 70.92
AI2 Reasoning Challenge (25-Shot) 67.06
HellaSwag (10-Shot) 86.01
MMLU (5-Shot) 69.14
TruthfulQA (0-shot) 57.07
Winogrande (5-shot) 81.77
GSM8k (5-shot) 64.44