Text Generation
Transformers
Safetensors
PyTorch
mistral
Safetensors
text-generation-inference
Merge
7b
mistralai/Mistral-7B-Instruct-v0.1
cognitivecomputations/dolphin-2.6-mistral-7b
en
dataset:ehartford/dolphin
dataset:jondurbin/airoboros-2.2.1
dataset:ehartford/dolphin-coder
dataset:teknium/openhermes
dataset:ise-uiuc/Magicoder-OSS-Instruct-75K
dataset:ise-uiuc/Magicoder-Evol-Instruct-110K
dataset:LDJnr/Capybara
Inference Endpoints
has_space
conversational
metadata
license: apache-2.0
tags:
- Safetensors
- mistral
- text-generation-inference
- merge
- mistral
- 7b
- mistralai/Mistral-7B-Instruct-v0.1
- cognitivecomputations/dolphin-2.6-mistral-7b
- transformers
- pytorch
- safetensors
- mistral
- text-generation
- en
- dataset:ehartford/dolphin
- dataset:jondurbin/airoboros-2.2.1
- dataset:ehartford/dolphin-coder
- dataset:teknium/openhermes
- dataset:ise-uiuc/Magicoder-OSS-Instruct-75K
- dataset:ise-uiuc/Magicoder-Evol-Instruct-110K
- dataset:LDJnr/Capybara
- license:apache-2.0
- autotrain_compatible
- endpoints_compatible
- has_space
- text-generation-inference
- region:us
dolphin-2.6-mistral-7b-Mistral-7B-Instruct-v0.1
dolphin-2.6-mistral-7b-Mistral-7B-Instruct-v0.1 is a merge of the following models:
🧩 Configuration
slices:
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.1
layer_range: [0, 32]
- model: cognitivecomputations/dolphin-2.6-mistral-7b
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "MaziyarPanahi/dolphin-2.6-mistral-7b-Mistral-7B-Instruct-v0.1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])