Edit model card

wav2vec2-base-100k-voxpopuli-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base-100k-voxpopuli on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9034
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1924 1.0 225 2.1487 0.27
1.8417 2.0 450 1.8767 0.38
1.6017 3.0 675 1.5778 0.51
1.3497 4.0 900 1.4785 0.4
1.2631 5.0 1125 1.3103 0.58
0.8172 6.0 1350 1.1736 0.63
1.1657 7.0 1575 0.9690 0.74
1.1711 8.0 1800 1.3609 0.63
0.5033 9.0 2025 0.7300 0.83
0.4104 10.0 2250 0.9866 0.72
0.318 11.0 2475 0.8159 0.81
0.1074 12.0 2700 0.8024 0.85
0.093 13.0 2925 0.8285 0.85
0.7407 14.0 3150 0.8591 0.87
0.027 15.0 3375 0.9574 0.84
0.4564 16.0 3600 0.9762 0.85
0.0198 17.0 3825 0.9204 0.85
0.5467 18.0 4050 0.8703 0.87
0.2644 19.0 4275 0.8855 0.87
0.013 20.0 4500 0.9034 0.87

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MechaBunny19c/wav2vec2-base-100k-voxpopuli-finetuned-gtzan

Finetuned
(1)
this model

Dataset used to train MechaBunny19c/wav2vec2-base-100k-voxpopuli-finetuned-gtzan

Evaluation results