wav2vec2-large-xls-r-300m-kinyarwanda
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.3917
- Wer: 0.3246
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
9.0634 | 0.12 | 400 | 3.0554 | 1.0 |
2.8009 | 0.24 | 800 | 1.5927 | 0.9554 |
0.9022 | 0.36 | 1200 | 0.7328 | 0.6445 |
0.6213 | 0.48 | 1600 | 0.6138 | 0.5510 |
0.5299 | 0.6 | 2000 | 0.6072 | 0.5223 |
0.4999 | 0.72 | 2400 | 0.5449 | 0.4969 |
0.4731 | 0.84 | 2800 | 0.5261 | 0.4828 |
0.458 | 0.96 | 3200 | 0.5058 | 0.4607 |
0.4158 | 1.09 | 3600 | 0.4892 | 0.4463 |
0.4037 | 1.21 | 4000 | 0.4759 | 0.4429 |
0.4021 | 1.33 | 4400 | 0.4615 | 0.4330 |
0.3934 | 1.45 | 4800 | 0.4593 | 0.4315 |
0.3808 | 1.57 | 5200 | 0.4736 | 0.4344 |
0.3838 | 1.69 | 5600 | 0.4569 | 0.4249 |
0.3726 | 1.81 | 6000 | 0.4473 | 0.4140 |
0.3623 | 1.93 | 6400 | 0.4403 | 0.4097 |
0.3517 | 2.05 | 6800 | 0.4389 | 0.4061 |
0.333 | 2.17 | 7200 | 0.4383 | 0.4104 |
0.3354 | 2.29 | 7600 | 0.4360 | 0.3955 |
0.3257 | 2.41 | 8000 | 0.4226 | 0.3942 |
0.3275 | 2.53 | 8400 | 0.4206 | 0.4040 |
0.3262 | 2.65 | 8800 | 0.4172 | 0.3875 |
0.3206 | 2.77 | 9200 | 0.4209 | 0.3877 |
0.323 | 2.89 | 9600 | 0.4177 | 0.3825 |
0.3099 | 3.01 | 10000 | 0.4101 | 0.3691 |
0.3008 | 3.14 | 10400 | 0.4055 | 0.3709 |
0.2918 | 3.26 | 10800 | 0.4085 | 0.3800 |
0.292 | 3.38 | 11200 | 0.4089 | 0.3713 |
0.292 | 3.5 | 11600 | 0.4092 | 0.3730 |
0.2785 | 3.62 | 12000 | 0.4151 | 0.3687 |
0.2941 | 3.74 | 12400 | 0.4004 | 0.3639 |
0.2838 | 3.86 | 12800 | 0.4108 | 0.3703 |
0.2854 | 3.98 | 13200 | 0.3911 | 0.3596 |
0.2683 | 4.1 | 13600 | 0.3944 | 0.3575 |
0.2647 | 4.22 | 14000 | 0.3836 | 0.3538 |
0.2704 | 4.34 | 14400 | 0.4006 | 0.3540 |
0.2664 | 4.46 | 14800 | 0.3974 | 0.3553 |
0.2662 | 4.58 | 15200 | 0.3890 | 0.3470 |
0.2615 | 4.7 | 15600 | 0.3856 | 0.3507 |
0.2553 | 4.82 | 16000 | 0.3814 | 0.3497 |
0.2587 | 4.94 | 16400 | 0.3837 | 0.3440 |
0.2522 | 5.06 | 16800 | 0.3834 | 0.3486 |
0.2451 | 5.19 | 17200 | 0.3897 | 0.3414 |
0.2423 | 5.31 | 17600 | 0.3864 | 0.3481 |
0.2434 | 5.43 | 18000 | 0.3808 | 0.3416 |
0.2525 | 5.55 | 18400 | 0.3795 | 0.3408 |
0.2427 | 5.67 | 18800 | 0.3841 | 0.3411 |
0.2411 | 5.79 | 19200 | 0.3804 | 0.3366 |
0.2404 | 5.91 | 19600 | 0.3800 | 0.3328 |
0.2372 | 6.03 | 20000 | 0.3749 | 0.3335 |
0.2244 | 6.15 | 20400 | 0.3820 | 0.3327 |
0.2381 | 6.27 | 20800 | 0.3789 | 0.3325 |
0.2294 | 6.39 | 21200 | 0.3867 | 0.3298 |
0.2378 | 6.51 | 21600 | 0.3843 | 0.3281 |
0.2312 | 6.63 | 22000 | 0.3813 | 0.3277 |
0.2411 | 6.75 | 22400 | 0.3780 | 0.3268 |
0.2315 | 6.87 | 22800 | 0.3790 | 0.3280 |
0.241 | 6.99 | 23200 | 0.3776 | 0.3281 |
0.2313 | 7.11 | 23600 | 0.3929 | 0.3283 |
0.2423 | 7.24 | 24000 | 0.3905 | 0.3280 |
0.2337 | 7.36 | 24400 | 0.3979 | 0.3249 |
0.2368 | 7.48 | 24800 | 0.3980 | 0.3257 |
0.2409 | 7.6 | 25200 | 0.3937 | 0.3229 |
0.2416 | 7.72 | 25600 | 0.3867 | 0.3237 |
0.2364 | 7.84 | 26000 | 0.3912 | 0.3253 |
0.234 | 7.96 | 26400 | 0.3917 | 0.3246 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.