|
--- |
|
tags: |
|
- gptq |
|
- 4bit |
|
- int4 |
|
- gptqmodel |
|
- modelcloud |
|
- llama-3.1 |
|
- 405b |
|
- instruct |
|
license: llama3.1 |
|
--- |
|
This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel). |
|
|
|
- **bits**: 4 |
|
- **group_size**: 128 |
|
- **desc_act**: true |
|
- **static_groups**: false |
|
- **sym**: true |
|
- **lm_head**: false |
|
- **damp_percent**: 0.01 |
|
- **true_sequential**: true |
|
- **model_name_or_path**: "" |
|
- **model_file_base_name**: "model" |
|
- **quant_method**: "gptq" |
|
- **checkpoint_format**: "gptq" |
|
- **meta**: |
|
- **quantizer**: "gptqmodel:0.9.9-dev0" |
|
|
|
## Example: |
|
```python |
|
from transformers import AutoTokenizer |
|
from gptqmodel import GPTQModel |
|
|
|
model_name = "ModelCloud/Meta-Llama-3.1-405B-Instruct-gptq-4bit" |
|
|
|
prompt = [{"role": "user", "content": "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
model = GPTQModel.from_quantized(model_name) |
|
|
|
input_tensor = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors="pt") |
|
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=100) |
|
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) |
|
|
|
print(result) |
|
``` |
|
|
|
## lm-eval benchmark |
|
``` |
|
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |
|
|---------------------------------------|------:|------|-----:|----------|---|-----:|---|-----:| |
|
|arc_challenge | 1|none | 0|acc |↑ |0.5990|± |0.0143| |
|
| | |none | 0|acc_norm |↑ |0.6425|± |0.0140| |
|
|arc_easy | 1|none | 0|acc |↑ |0.8645|± |0.0070| |
|
| | |none | 0|acc_norm |↑ |0.8359|± |0.0076| |
|
|boolq | 2|none | 0|acc |↑ |0.8820|± |0.0056| |
|
|hellaswag | 1|none | 0|acc |↑ |0.6560|± |0.0047| |
|
| | |none | 0|acc_norm |↑ |0.8446|± |0.0036| |
|
|lambada_openai | 1|none | 0|acc |↑ |0.7252|± |0.0062| |
|
| | |none | 0|perplexity|↓ |3.5576|± |0.0880| |
|
|mmlu | 1|none | |acc |↑ |0.8245|± |0.0031| |
|
| - humanities | 1|none | |acc |↑ |0.7892|± |0.0058| |
|
| - formal_logic | 0|none | 0|acc |↑ |0.6349|± |0.0431| |
|
| - high_school_european_history | 0|none | 0|acc |↑ |0.8667|± |0.0265| |
|
| - high_school_us_history | 0|none | 0|acc |↑ |0.9314|± |0.0177| |
|
| - high_school_world_history | 0|none | 0|acc |↑ |0.9367|± |0.0158| |
|
| - international_law | 0|none | 0|acc |↑ |0.9091|± |0.0262| |
|
| - jurisprudence | 0|none | 0|acc |↑ |0.8796|± |0.0315| |
|
| - logical_fallacies | 0|none | 0|acc |↑ |0.8834|± |0.0252| |
|
| - moral_disputes | 0|none | 0|acc |↑ |0.8295|± |0.0202| |
|
| - moral_scenarios | 0|none | 0|acc |↑ |0.7888|± |0.0137| |
|
| - philosophy | 0|none | 0|acc |↑ |0.8521|± |0.0202| |
|
| - prehistory | 0|none | 0|acc |↑ |0.8735|± |0.0185| |
|
| - professional_law | 0|none | 0|acc |↑ |0.6760|± |0.0120| |
|
| - world_religions | 0|none | 0|acc |↑ |0.8830|± |0.0246| |
|
| - other | 1|none | |acc |↑ |0.8539|± |0.0060| |
|
| - business_ethics | 0|none | 0|acc |↑ |0.8100|± |0.0394| |
|
| - clinical_knowledge | 0|none | 0|acc |↑ |0.8679|± |0.0208| |
|
| - college_medicine | 0|none | 0|acc |↑ |0.7688|± |0.0321| |
|
| - global_facts | 0|none | 0|acc |↑ |0.7000|± |0.0461| |
|
| - human_aging | 0|none | 0|acc |↑ |0.8341|± |0.0250| |
|
| - management | 0|none | 0|acc |↑ |0.8932|± |0.0306| |
|
| - marketing | 0|none | 0|acc |↑ |0.9444|± |0.0150| |
|
| - medical_genetics | 0|none | 0|acc |↑ |0.9300|± |0.0256| |
|
| - miscellaneous | 0|none | 0|acc |↑ |0.9425|± |0.0083| |
|
| - nutrition | 0|none | 0|acc |↑ |0.8987|± |0.0173| |
|
| - professional_accounting | 0|none | 0|acc |↑ |0.6773|± |0.0279| |
|
| - professional_medicine | 0|none | 0|acc |↑ |0.9228|± |0.0162| |
|
| - virology | 0|none | 0|acc |↑ |0.5542|± |0.0387| |
|
| - social sciences | 1|none | |acc |↑ |0.8833|± |0.0057| |
|
| - econometrics | 0|none | 0|acc |↑ |0.7193|± |0.0423| |
|
| - high_school_geography | 0|none | 0|acc |↑ |0.9394|± |0.0170| |
|
| - high_school_government_and_politics| 0|none | 0|acc |↑ |0.9741|± |0.0115| |
|
| - high_school_macroeconomics | 0|none | 0|acc |↑ |0.8615|± |0.0175| |
|
| - high_school_microeconomics | 0|none | 0|acc |↑ |0.9412|± |0.0153| |
|
| - high_school_psychology | 0|none | 0|acc |↑ |0.9321|± |0.0108| |
|
| - human_sexuality | 0|none | 0|acc |↑ |0.8550|± |0.0309| |
|
| - professional_psychology | 0|none | 0|acc |↑ |0.8497|± |0.0145| |
|
| - public_relations | 0|none | 0|acc |↑ |0.7636|± |0.0407| |
|
| - security_studies | 0|none | 0|acc |↑ |0.8163|± |0.0248| |
|
| - sociology | 0|none | 0|acc |↑ |0.9204|± |0.0191| |
|
| - us_foreign_policy | 0|none | 0|acc |↑ |0.9300|± |0.0256| |
|
| - stem | 1|none | |acc |↑ |0.7907|± |0.0070| |
|
| - abstract_algebra | 0|none | 0|acc |↑ |0.5800|± |0.0496| |
|
| - anatomy | 0|none | 0|acc |↑ |0.8296|± |0.0325| |
|
| - astronomy | 0|none | 0|acc |↑ |0.9145|± |0.0228| |
|
| - college_biology | 0|none | 0|acc |↑ |0.9236|± |0.0222| |
|
| - college_chemistry | 0|none | 0|acc |↑ |0.5800|± |0.0496| |
|
| - college_computer_science | 0|none | 0|acc |↑ |0.7300|± |0.0446| |
|
| - college_mathematics | 0|none | 0|acc |↑ |0.5800|± |0.0496| |
|
| - college_physics | 0|none | 0|acc |↑ |0.7157|± |0.0449| |
|
| - computer_security | 0|none | 0|acc |↑ |0.8000|± |0.0402| |
|
| - conceptual_physics | 0|none | 0|acc |↑ |0.8383|± |0.0241| |
|
| - electrical_engineering | 0|none | 0|acc |↑ |0.7931|± |0.0338| |
|
| - elementary_mathematics | 0|none | 0|acc |↑ |0.8730|± |0.0171| |
|
| - high_school_biology | 0|none | 0|acc |↑ |0.9161|± |0.0158| |
|
| - high_school_chemistry | 0|none | 0|acc |↑ |0.7685|± |0.0297| |
|
| - high_school_computer_science | 0|none | 0|acc |↑ |0.9600|± |0.0197| |
|
| - high_school_mathematics | 0|none | 0|acc |↑ |0.6556|± |0.0290| |
|
| - high_school_physics | 0|none | 0|acc |↑ |0.7086|± |0.0371| |
|
| - high_school_statistics | 0|none | 0|acc |↑ |0.7778|± |0.0284| |
|
| - machine_learning | 0|none | 0|acc |↑ |0.7054|± |0.0433| |
|
|openbookqa | 1|none | 0|acc |↑ |0.3300|± |0.0210| |
|
| | |none | 0|acc_norm |↑ |0.4420|± |0.0222| |
|
|piqa | 1|none | 0|acc |↑ |0.8188|± |0.0090| |
|
| | |none | 0|acc_norm |↑ |0.8308|± |0.0087| |
|
|rte | 1|none | 0|acc |↑ |0.7220|± |0.0270| |
|
|truthfulqa_mc1 | 2|none | 0|acc |↑ |0.4333|± |0.0173| |
|
|winogrande | 1|none | 0|acc |↑ |0.7656|± |0.0119| |
|
|
|
| Groups |Version|Filter|n-shot|Metric| |Value | |Stderr| |
|
|------------------|------:|------|------|------|---|-----:|---|-----:| |
|
|mmlu | 1|none | |acc |↑ |0.8245|± |0.0031| |
|
| - humanities | 1|none | |acc |↑ |0.7892|± |0.0058| |
|
| - other | 1|none | |acc |↑ |0.8539|± |0.0060| |
|
| - social sciences| 1|none | |acc |↑ |0.8833|± |0.0057| |
|
| - stem | 1|none | |acc |↑ |0.7907|± |0.0070| |
|
``` |
|
|