metadata
language: en
datasets:
- truthful_qa
license: apache-2.0
tags:
- qlora
- falcon
- fine-tuning
- nlp
- causal-lm
- h100
library_name: peft
base_model: tiiuae/falcon-7b-instruct
Falcon-7B QLoRA Fine-Tuned on TruthfulQA
Model Description
This model is a fine-tuned version of the tiiuae/falcon-7b-instruct
using the QLoRA technique on the TruthfulQA dataset.
Training
- Base Model: tiiuae/falcon-7b-instruct
- Dataset: TruthfulQA
- Training Technique: QLoRA
- Hardware: H100 GPUs
- Epochs: 10
- Batch Size: 16
- Learning Rate: 2e-4
How to Use
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Load the base model
base_model_name = "tiiuae/falcon-7b-instruct"
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
# Load the adapter and apply it to the base model
adapter_repo_name = "MohammadOthman/falcon-7b-qlora-truthfulqa"
model = PeftModel.from_pretrained(base_model, adapter_repo_name)
# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Function to generate text
def generate_text(prompt, max_length=100, num_return_sequences=1):
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt").to(device)
# Generate text
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=max_length,
num_return_sequences=num_return_sequences,
do_sample=True,
temperature=0.7
)
# Decode and print the output
for i, output in enumerate(outputs):
print(f"Generated Text {i+1}: {tokenizer.decode(output, skip_special_tokens=True)}")
# Example usage
prompt = "Once upon a time in a land far, far away"
generate_text(prompt)