Edit model card

Keras model with ruBERT conversational embedder for Sentiment Analysis

Russian texts sentiment classification.

Model trained on Tatyana/ru_sentiment_dataset

Labels meaning

0: NEUTRAL
1: POSITIVE
2: NEGATIVE

How to use


!pip install tensorflow-gpu
!pip install deeppavlov
!python -m deeppavlov install squad_bert
!pip install fasttext
!pip install transformers
!python -m deeppavlov install bert_sentence_embedder

from deeppavlov import build_model

model = build_model(Tatyana/rubert_conversational_cased_sentiment/custom_config.json)
model(["Сегодня хорошая погода", "Я счастлив проводить с тобою время", "Мне нравится эта музыкальная композиция"])
Downloads last month
55
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train MonoHime/rubert_conversational_cased_sentiment