metadata
base_model: Mprimus/T5-summarize
tags:
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
- bleu
model-index:
- name: T5-summarize
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: cnn_dailymail
type: cnn_dailymail
config: 3.0.0
split: train
args: 3.0.0
metrics:
- name: Rouge1
type: rouge
value: 24.0364
- name: Bleu
type: bleu
value: 0.0141
T5-summarize
This model is a fine-tuned version of Mprimus/T5-summarize on the cnn_dailymail dataset. It achieves the following results on the evaluation set:
- Loss: 0.9246
- Rouge1: 24.0364
- Rouge2: 11.0646
- Rougel: 19.9812
- Rougelsum: 22.5659
- Bleu: 0.0141
- Gen Len: 18.9845
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 80
- eval_batch_size: 80
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len |
---|---|---|---|---|---|---|---|---|---|
1.0307 | 1.0 | 2872 | 0.9246 | 24.0364 | 11.0646 | 19.9812 | 22.5659 | 0.0141 | 18.9845 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0