metadata
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: irony_fr_France
results: []
irony_fr_France
This model is a fine-tuned version of roberta-base on the MultiPICo dataset. It achieves the following results on the evaluation set:
- Loss: 0.0028
- Accuracy: 0.7192
- Precision: 0.3910
- Recall: 0.6667
- F1: 0.4929
Model description
The model is trained considering the annotation of annotators from France only. The annotations from these annotators are aggregated using majority voting and then used to train the model.
Training and evaluation data
The model has been trained on the annotation from annotators from France from the MultiPICo dataset. The data has been randomly split into a train and a validation set.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.0044 | 1.0 | 72 | 0.0042 | 0.7953 | 0.0 | 0.0 | 0.0 |
0.0042 | 2.0 | 144 | 0.0041 | 0.8058 | 0.5417 | 0.3333 | 0.4127 |
0.0041 | 3.0 | 216 | 0.0039 | 0.5958 | 0.3 | 0.7308 | 0.4254 |
0.0037 | 4.0 | 288 | 0.0036 | 0.5486 | 0.2824 | 0.7821 | 0.4150 |
0.0034 | 5.0 | 360 | 0.0031 | 0.7192 | 0.3782 | 0.5769 | 0.4569 |
0.0033 | 6.0 | 432 | 0.0031 | 0.6352 | 0.3129 | 0.6538 | 0.4232 |
0.0027 | 7.0 | 504 | 0.0028 | 0.6089 | 0.3216 | 0.8205 | 0.4621 |
0.002 | 8.0 | 576 | 0.0028 | 0.6614 | 0.3265 | 0.6154 | 0.4267 |
0.0017 | 9.0 | 648 | 0.0023 | 0.6562 | 0.3536 | 0.8205 | 0.4942 |
0.0017 | 10.0 | 720 | 0.0024 | 0.5906 | 0.3178 | 0.8718 | 0.4658 |
0.0012 | 11.0 | 792 | 0.0028 | 0.7192 | 0.3910 | 0.6667 | 0.4929 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1