irony_pt_Brazil / README.md
silvia-casola's picture
Update README.md
c97ee2c
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: irony_pt_Brazil
    results: []

irony_pt_Brazil

This model is a fine-tuned version of roberta-base on part of the MultiPICo dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0033
  • Accuracy: 0.6463
  • Precision: 0.44
  • Recall: 0.5739
  • F1: 0.4981

Model description

The model is trained considering the annotation of annotators from Brazil only, on instances in Portuguese (PT and BZ linguistic varieties). The annotations from these annotators are aggregated using majority voting and then used to train the model.

Training and evaluation data

The model has been trained on the annotation from annotators from Brazil from the MultiPICo dataset (instances in Portuguese). The data has been randomly split into a train and a validation set.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0043 1.0 71 0.0042 0.5745 0.3448 0.4348 0.3846
0.0043 2.0 142 0.0041 0.5266 0.3562 0.6783 0.4671
0.0039 3.0 213 0.0039 0.5266 0.3562 0.6783 0.4671
0.004 4.0 284 0.0038 0.6170 0.4110 0.5826 0.4820
0.0036 5.0 355 0.0035 0.6516 0.4452 0.5652 0.4981
0.0035 6.0 426 0.0036 0.4973 0.3630 0.8522 0.5091
0.0031 7.0 497 0.0033 0.5904 0.4156 0.8348 0.5549
0.0027 8.0 568 0.0033 0.6543 0.4460 0.5391 0.4882
0.0027 9.0 639 0.0031 0.6144 0.4257 0.7478 0.5426
0.0023 10.0 710 0.0029 0.6303 0.4388 0.7478 0.5531
0.0021 11.0 781 0.0031 0.6383 0.4348 0.6087 0.5072
0.0018 12.0 852 0.0033 0.6463 0.44 0.5739 0.4981

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.1