NDugar commited on
Commit
102014f
1 Parent(s): a20bc0f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -23
README.md CHANGED
@@ -9,6 +9,22 @@ license: mit
9
  pipeline_tag: zero-shot-classification
10
  ---
11
  ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  #### Notes.
13
  - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
14
  - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp**
@@ -18,26 +34,15 @@ cd transformers/examples/text-classification/
18
  export TASK_NAME=mrpc
19
  python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\n--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\n--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
20
  ```
21
- This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the GLUE MNLI dataset.
22
- It achieves the following results on the evaluation set:
23
- - Loss: 0.4103
24
- - Accuracy: 0.9175
25
-
26
- ### Training hyperparameters
27
-
28
- The following hyperparameters were used during training:
29
- - learning_rate: 6e-06
30
- - train_batch_size: 8
31
- - eval_batch_size: 8
32
- - seed: 42
33
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
34
- - lr_scheduler_type: linear
35
- - lr_scheduler_warmup_steps: 50
36
- - num_epochs: 2.0
37
-
38
- ### Training results
39
-
40
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
41
- |:-------------:|:-----:|:-----:|:---------------:|:--------:|
42
- | 0.3631 | 1.0 | 49088 | 0.3129 | 0.9130 |
43
- | 0.2267 | 2.0 | 98176 | 0.4157 | 0.9153 |
 
9
  pipeline_tag: zero-shot-classification
10
  ---
11
  ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
12
+ [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
13
+ Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
14
+ This is the DeBERTa large model fine-tuned with MNLI task.
15
+ #### Fine-tuning on NLU tasks
16
+ We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
17
+ | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B |
18
+ |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
19
+ | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S |
20
+ | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- |
21
+ | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- |
22
+ | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- |
23
+ | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 |
24
+ | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7|
25
+ | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9|
26
+ |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** |
27
+ --------
28
  #### Notes.
29
  - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
30
  - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp**
 
34
  export TASK_NAME=mrpc
35
  python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\n--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\n--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
36
  ```
37
+ ### Citation
38
+ If you find DeBERTa useful for your work, please cite the following paper:
39
+ ``` latex
40
+ @inproceedings{
41
+ he2021deberta,
42
+ title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
43
+ author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
44
+ booktitle={International Conference on Learning Representations},
45
+ year={2021},
46
+ url={https://openreview.net/forum?id=XPZIaotutsD}
47
+ }
48
+ ```