NPCProgrammer's picture
Model save
e99f5b7 verified
|
raw
history blame
3.44 kB
metadata
license: apache-2.0
base_model: albert-base-v2
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
model-index:
  - name: ALBERT_Emotions_tuned
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.927

ALBERT_Emotions_tuned

This model is a fine-tuned version of albert-base-v2 on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1846
  • Accuracy: 0.927

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.1 100 1.2655 0.5575
No log 0.2 200 1.0801 0.6415
No log 0.3 300 1.0138 0.661
No log 0.4 400 1.0651 0.605
1.1328 0.5 500 0.7816 0.758
1.1328 0.6 600 0.6307 0.7885
1.1328 0.7 700 0.5072 0.848
1.1328 0.8 800 0.5057 0.8305
1.1328 0.9 900 0.3853 0.889
0.5503 1.0 1000 0.3769 0.8915
0.5503 1.1 1100 0.3778 0.8995
0.5503 1.2 1200 0.3899 0.9005
0.5503 1.3 1300 0.3330 0.9085
0.5503 1.4 1400 0.3339 0.9085
0.3049 1.5 1500 0.2662 0.915
0.3049 1.6 1600 0.3209 0.9045
0.3049 1.7 1700 0.3110 0.898
0.3049 1.8 1800 0.3185 0.9075
0.3049 1.9 1900 0.2439 0.922
0.2485 2.0 2000 0.2190 0.925
0.2485 2.1 2100 0.2372 0.9235
0.2485 2.2 2200 0.2497 0.9265
0.2485 2.3 2300 0.2811 0.9195
0.2485 2.4 2400 0.2350 0.9195
0.1587 2.5 2500 0.2303 0.9245
0.1587 2.6 2600 0.2242 0.9285
0.1587 2.7 2700 0.2141 0.9325
0.1587 2.8 2800 0.2185 0.9315
0.1587 2.9 2900 0.2047 0.9315
0.1398 3.0 3000 0.2036 0.9335

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2