|
--- |
|
language: |
|
- hu |
|
tags: |
|
- text-classification |
|
license: mit |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: Jó reggelt! majd küldöm az élményhozókat :). |
|
--- |
|
|
|
# Hungarian Sentence-level Sentiment Analysis Model with XLM-RoBERTa |
|
|
|
For further models, scripts and details, see [our repository](https://github.com/nytud/sentiment-analysis) or [our demo site](https://juniper.nytud.hu/demo/nlp). |
|
|
|
- Pretrained model used: XLM-RoBERTa base |
|
- Finetuned on Hungarian Twitter Sentiment (HTS) Corpus |
|
- Labels: 0 (negative), 1 (positive) |
|
|
|
## Limitations |
|
|
|
- max_seq_length = 128 |
|
|
|
## Results |
|
|
|
| Model | HTS2 | HTS5 | |
|
| ------------- | ------------- | ------------- | |
|
| huBERT | 85.56 | 68.99 | |
|
| XLM-RoBERTa| **85.56** | 66.50 | |
|
|
|
## Citation |
|
If you use this model, please cite the following paper: |
|
|
|
``` |
|
@article {laki-yang-sentiment, |
|
author = {Laki, László János and Yang, Zijian Győző}, |
|
title = {Sentiment Analysis with Neural Models for Hungarian}, |
|
journal = {Acta Polytechnica Hungarica}, |
|
year = {2023}, |
|
publisher = {Obuda University}, |
|
volume = {20}, |
|
number = {5}, |
|
doi = {10.12700/APH.20.5.2023.5.8}, |
|
pages= {109--128}, |
|
url = {https://acta.uni-obuda.hu/Laki_Yang_134.pdf} |
|
} |
|
|
|
``` |