metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1100
- loss:CoSENTLoss
base_model: WhereIsAI/UAE-Large-V1
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: booking_reference
sentences:
- Person
- Person
- Organization
- source_sentence: supply
sentences:
- Time
- Quantity
- Person
- source_sentence: spouse
sentences:
- ID
- Person
- Person
- source_sentence: blood_type
sentences:
- Person
- Geographical
- Organization
- source_sentence: account_id
sentences:
- ID
- Organization
- Quantity
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on WhereIsAI/UAE-Large-V1
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8924660010011639
name: Pearson Cosine
- type: spearman_cosine
value: 0.8235197032172585
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8606201562664572
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8165407226815192
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8607526008409677
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8151449265743713
name: Spearman Euclidean
- type: pearson_dot
value: 0.8740992356806746
name: Pearson Dot
- type: spearman_dot
value: 0.8339881740208678
name: Spearman Dot
- type: pearson_max
value: 0.8924660010011639
name: Pearson Max
- type: spearman_max
value: 0.8339881740208678
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev test
type: sts-dev_test
metrics:
- type: pearson_cosine
value: 0.7742742031598305
name: Pearson Cosine
- type: spearman_cosine
value: 0.7349811537106432
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8011822405747617
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7482240573811053
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7973589089683236
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7482240573811053
name: Spearman Euclidean
- type: pearson_dot
value: 0.7745895614088659
name: Pearson Dot
- type: spearman_dot
value: 0.7482240573811053
name: Spearman Dot
- type: pearson_max
value: 0.8011822405747617
name: Pearson Max
- type: spearman_max
value: 0.7482240573811053
name: Spearman Max
SentenceTransformer based on WhereIsAI/UAE-Large-V1
This is a sentence-transformers model finetuned from WhereIsAI/UAE-Large-V1. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: WhereIsAI/UAE-Large-V1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Naveen20o1/UAE_Large_V1_nav2")
# Run inference
sentences = [
'account_id',
'ID',
'Quantity',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8925 |
spearman_cosine | 0.8235 |
pearson_manhattan | 0.8606 |
spearman_manhattan | 0.8165 |
pearson_euclidean | 0.8608 |
spearman_euclidean | 0.8151 |
pearson_dot | 0.8741 |
spearman_dot | 0.834 |
pearson_max | 0.8925 |
spearman_max | 0.834 |
Semantic Similarity
- Dataset:
sts-dev_test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7743 |
spearman_cosine | 0.735 |
pearson_manhattan | 0.8012 |
spearman_manhattan | 0.7482 |
pearson_euclidean | 0.7974 |
spearman_euclidean | 0.7482 |
pearson_dot | 0.7746 |
spearman_dot | 0.7482 |
pearson_max | 0.8012 |
spearman_max | 0.7482 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,100 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 4.32 tokens
- max: 10 tokens
- min: 3 tokens
- mean: 3.12 tokens
- max: 4 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
sentence1 sentence2 score enrollment
Quantity
1.0
instrument
Artifact
1.0
stock_level
Geographical
0.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 100 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 4.29 tokens
- max: 7 tokens
- min: 3 tokens
- mean: 3.09 tokens
- max: 4 tokens
- min: 0.0
- mean: 0.56
- max: 1.0
- Samples:
sentence1 sentence2 score review
Quantity
0.0
machinery
Artifact
1.0
locality
Geographical
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 11warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 11max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-dev_test_spearman_cosine |
---|---|---|---|---|---|
0.7246 | 50 | 2.9649 | - | - | - |
1.4493 | 100 | 1.0967 | 1.4481 | 0.8368 | - |
2.1739 | 150 | 0.5062 | - | - | - |
2.8986 | 200 | 0.3909 | 1.3760 | 0.8242 | - |
3.6232 | 250 | 0.2006 | - | - | - |
4.3478 | 300 | 0.0324 | 2.3098 | 0.8124 | - |
5.0725 | 350 | 0.0564 | - | - | - |
5.7971 | 400 | 0.0729 | 1.5758 | 0.8193 | - |
6.5217 | 450 | 0.0051 | - | - | - |
7.2464 | 500 | 0.0091 | 2.2818 | 0.8165 | - |
7.9710 | 550 | 0.0084 | - | - | - |
8.6957 | 600 | 0.0319 | 1.9056 | 0.8144 | - |
9.4203 | 650 | 0.0023 | - | - | - |
10.1449 | 700 | 0.0136 | 2.1295 | 0.8235 | - |
10.8696 | 750 | 0.0156 | - | - | - |
11.0 | 759 | - | - | - | 0.7350 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}