metadata
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
EPS:Why do I invest in $TSLA? Do I have blind faith? No. I closely watch
their EPS, their P/E, their products, their forecast. This is the only
investment I KNOW. And I know this is a great investment. I don’t say this
to convince anyone. These are my thoughts about my investment.
- text: >-
EPS:$TSLA at 57x Street 2023 EPS (45x my 2023 EPS) seems an absurd
valuation for 50%+ volume/EPS growth fueled by the dual tailwinds of
soaring EV adoption and TSLA capacity. Investors seem overly worried Elon
will sell more TSLA shares even though he says “no further sales planned.”
https://t.co/80siAfL847
- text: >-
TSLA:Cars ... for delivery ? Most likely so. $TSLA #GigaBerlin
https://t.co/XL6auHEYjZ
- text: >-
companies:Mainstream media has done an amazing job at brainwashing people.
Today at work, we were asked what companies we believe in & I said
@Tesla because they make the safest cars & EVERYONE disagreed with me
because they heard“they catch on fire & the batteries cost 20k to
replace”
- text: >-
cash flow:The market won’t be able to hold Tesla stock down longer, once
all factories are ramping and in full production.
There’s a certain point where the # of cars being produced, revenue &
profit & cash flow generated makes the valuation of Tesla look
ridiculous.
$TSLA #Tesla
pipeline_tag: text-classification
inference: false
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9798115746971736
name: Accuracy
SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use this SetFit model to filter these possible aspect span candidates.
- Use a SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- spaCy Model: en_core_web_lg
- SetFitABSA Aspect Model: NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect
- SetFitABSA Polarity Model: NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
no aspect |
|
aspect |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9798 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect",
"NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 11 | 41.4789 | 57 |
Label | Training Sample Count |
---|---|
no aspect | 560 |
aspect | 33 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.2511 | - |
0.0025 | 50 | 0.2558 | - |
0.0051 | 100 | 0.2147 | - |
0.0076 | 150 | 0.2265 | - |
0.0101 | 200 | 0.2474 | - |
0.0127 | 250 | 0.2286 | - |
0.0152 | 300 | 0.1717 | - |
0.0178 | 350 | 0.0737 | - |
0.0203 | 400 | 0.0231 | - |
0.0228 | 450 | 0.0069 | - |
0.0254 | 500 | 0.0032 | - |
0.0279 | 550 | 0.002 | - |
0.0304 | 600 | 0.0008 | - |
0.0330 | 650 | 0.0023 | - |
0.0355 | 700 | 0.002 | - |
0.0381 | 750 | 0.0008 | - |
0.0406 | 800 | 0.0019 | - |
0.0431 | 850 | 0.0003 | - |
0.0457 | 900 | 0.0004 | - |
0.0482 | 950 | 0.0005 | - |
0.0507 | 1000 | 0.0003 | - |
0.0533 | 1050 | 0.0006 | - |
0.0558 | 1100 | 0.0071 | - |
0.0584 | 1150 | 0.0001 | - |
0.0609 | 1200 | 0.0001 | - |
0.0634 | 1250 | 0.0001 | - |
0.0660 | 1300 | 0.0001 | - |
0.0685 | 1350 | 0.0004 | - |
0.0710 | 1400 | 0.0001 | - |
0.0736 | 1450 | 0.0002 | - |
0.0761 | 1500 | 0.0002 | - |
0.0787 | 1550 | 0.0002 | - |
0.0812 | 1600 | 0.0001 | - |
0.0837 | 1650 | 0.0001 | - |
0.0863 | 1700 | 0.0007 | - |
0.0888 | 1750 | 0.0001 | - |
0.0913 | 1800 | 0.0002 | - |
0.0939 | 1850 | 0.0011 | - |
0.0964 | 1900 | 0.0007 | - |
0.0990 | 1950 | 0.001 | - |
0.1015 | 2000 | 0.0003 | - |
0.1040 | 2050 | 0.0004 | - |
0.1066 | 2100 | 0.0006 | - |
0.1091 | 2150 | 0.0004 | - |
0.1116 | 2200 | 0.0 | - |
0.1142 | 2250 | 0.0 | - |
0.1167 | 2300 | 0.0001 | - |
0.1193 | 2350 | 0.0017 | - |
0.1218 | 2400 | 0.0007 | - |
0.1243 | 2450 | 0.0023 | - |
0.1269 | 2500 | 0.0 | - |
0.1294 | 2550 | 0.0 | - |
0.1319 | 2600 | 0.0007 | - |
0.1345 | 2650 | 0.0 | - |
0.1370 | 2700 | 0.0004 | - |
0.1396 | 2750 | 0.0001 | - |
0.1421 | 2800 | 0.0002 | - |
0.1446 | 2850 | 0.0019 | - |
0.1472 | 2900 | 0.0002 | - |
0.1497 | 2950 | 0.0001 | - |
0.1522 | 3000 | 0.0 | - |
0.1548 | 3050 | 0.0001 | - |
0.1573 | 3100 | 0.0 | - |
0.1598 | 3150 | 0.0001 | - |
0.1624 | 3200 | 0.0007 | - |
0.1649 | 3250 | 0.0 | - |
0.1675 | 3300 | 0.0002 | - |
0.1700 | 3350 | 0.0004 | - |
0.1725 | 3400 | 0.0 | - |
0.1751 | 3450 | 0.0 | - |
0.1776 | 3500 | 0.0 | - |
0.1801 | 3550 | 0.0 | - |
0.1827 | 3600 | 0.0001 | - |
0.1852 | 3650 | 0.0 | - |
0.1878 | 3700 | 0.0001 | - |
0.1903 | 3750 | 0.0 | - |
0.1928 | 3800 | 0.0 | - |
0.1954 | 3850 | 0.0 | - |
0.1979 | 3900 | 0.0 | - |
0.2004 | 3950 | 0.0 | - |
0.2030 | 4000 | 0.0 | - |
0.2055 | 4050 | 0.0019 | - |
0.2081 | 4100 | 0.0 | - |
0.2106 | 4150 | 0.0001 | - |
0.2131 | 4200 | 0.0 | - |
0.2157 | 4250 | 0.0 | - |
0.2182 | 4300 | 0.0 | - |
0.2207 | 4350 | 0.0 | - |
0.2233 | 4400 | 0.0005 | - |
0.2258 | 4450 | 0.0 | - |
0.2284 | 4500 | 0.0 | - |
0.2309 | 4550 | 0.0 | - |
0.2334 | 4600 | 0.0 | - |
0.2360 | 4650 | 0.0 | - |
0.2385 | 4700 | 0.0009 | - |
0.2410 | 4750 | 0.0 | - |
0.2436 | 4800 | 0.0 | - |
0.2461 | 4850 | 0.0 | - |
0.2487 | 4900 | 0.0002 | - |
0.2512 | 4950 | 0.0 | - |
0.2537 | 5000 | 0.0011 | - |
0.2563 | 5050 | 0.0 | - |
0.2588 | 5100 | 0.0 | - |
0.2613 | 5150 | 0.0 | - |
0.2639 | 5200 | 0.0 | - |
0.2664 | 5250 | 0.0 | - |
0.2690 | 5300 | 0.0 | - |
0.2715 | 5350 | 0.0026 | - |
0.2740 | 5400 | 0.0 | - |
0.2766 | 5450 | 0.0021 | - |
0.2791 | 5500 | 0.0 | - |
0.2816 | 5550 | 0.0001 | - |
0.2842 | 5600 | 0.0 | - |
0.2867 | 5650 | 0.0001 | - |
0.2893 | 5700 | 0.0 | - |
0.2918 | 5750 | 0.0 | - |
0.2943 | 5800 | 0.0 | - |
0.2969 | 5850 | 0.0 | - |
0.2994 | 5900 | 0.0 | - |
0.3019 | 5950 | 0.0 | - |
0.3045 | 6000 | 0.0 | - |
0.3070 | 6050 | 0.0 | - |
0.3096 | 6100 | 0.0 | - |
0.3121 | 6150 | 0.0003 | - |
0.3146 | 6200 | 0.0 | - |
0.3172 | 6250 | 0.0 | - |
0.3197 | 6300 | 0.0 | - |
0.3222 | 6350 | 0.0001 | - |
0.3248 | 6400 | 0.0009 | - |
0.3273 | 6450 | 0.0 | - |
0.3298 | 6500 | 0.0 | - |
0.3324 | 6550 | 0.0 | - |
0.3349 | 6600 | 0.0 | - |
0.3375 | 6650 | 0.0 | - |
0.3400 | 6700 | 0.0 | - |
0.3425 | 6750 | 0.0 | - |
0.3451 | 6800 | 0.0 | - |
0.3476 | 6850 | 0.0 | - |
0.3501 | 6900 | 0.0 | - |
0.3527 | 6950 | 0.0 | - |
0.3552 | 7000 | 0.0 | - |
0.3578 | 7050 | 0.0 | - |
0.3603 | 7100 | 0.0536 | - |
0.3628 | 7150 | 0.0 | - |
0.3654 | 7200 | 0.0 | - |
0.3679 | 7250 | 0.0 | - |
0.3704 | 7300 | 0.0 | - |
0.3730 | 7350 | 0.0 | - |
0.3755 | 7400 | 0.0 | - |
0.3781 | 7450 | 0.0 | - |
0.3806 | 7500 | 0.0 | - |
0.3831 | 7550 | 0.0 | - |
0.3857 | 7600 | 0.0 | - |
0.3882 | 7650 | 0.0 | - |
0.3907 | 7700 | 0.0 | - |
0.3933 | 7750 | 0.0019 | - |
0.3958 | 7800 | 0.0 | - |
0.3984 | 7850 | 0.0 | - |
0.4009 | 7900 | 0.0548 | - |
0.4034 | 7950 | 0.0 | - |
0.4060 | 8000 | 0.0053 | - |
0.4085 | 8050 | 0.0 | - |
0.4110 | 8100 | 0.0 | - |
0.4136 | 8150 | 0.0 | - |
0.4161 | 8200 | 0.0 | - |
0.4187 | 8250 | 0.0624 | - |
0.4212 | 8300 | 0.0622 | - |
0.4237 | 8350 | 0.0618 | - |
0.4263 | 8400 | 0.0001 | - |
0.4288 | 8450 | 0.0 | - |
0.4313 | 8500 | 0.0001 | - |
0.4339 | 8550 | 0.0 | - |
0.4364 | 8600 | 0.0 | - |
0.4390 | 8650 | 0.0 | - |
0.4415 | 8700 | 0.0012 | - |
0.4440 | 8750 | 0.0001 | - |
0.4466 | 8800 | 0.0005 | - |
0.4491 | 8850 | 0.0 | - |
0.4516 | 8900 | 0.0 | - |
0.4542 | 8950 | 0.0 | - |
0.4567 | 9000 | 0.0 | - |
0.4593 | 9050 | 0.0 | - |
0.4618 | 9100 | 0.0 | - |
0.4643 | 9150 | 0.0 | - |
0.4669 | 9200 | 0.0 | - |
0.4694 | 9250 | 0.0408 | - |
0.4719 | 9300 | 0.0498 | - |
0.4745 | 9350 | 0.0 | - |
0.4770 | 9400 | 0.0 | - |
0.4795 | 9450 | 0.0017 | - |
0.4821 | 9500 | 0.0 | - |
0.4846 | 9550 | 0.0 | - |
0.4872 | 9600 | 0.0 | - |
0.4897 | 9650 | 0.0 | - |
0.4922 | 9700 | 0.0 | - |
0.4948 | 9750 | 0.0 | - |
0.4973 | 9800 | 0.0589 | - |
0.4998 | 9850 | 0.0 | - |
0.5024 | 9900 | 0.0 | - |
0.5049 | 9950 | 0.0015 | - |
0.5075 | 10000 | 0.0 | - |
0.5100 | 10050 | 0.0 | - |
0.5125 | 10100 | 0.0 | - |
0.5151 | 10150 | 0.0 | - |
0.5176 | 10200 | 0.0 | - |
0.5201 | 10250 | 0.0 | - |
0.5227 | 10300 | 0.0013 | - |
0.5252 | 10350 | 0.0023 | - |
0.5278 | 10400 | 0.0 | - |
0.5303 | 10450 | 0.0 | - |
0.5328 | 10500 | 0.0 | - |
0.5354 | 10550 | 0.0003 | - |
0.5379 | 10600 | 0.0 | - |
0.5404 | 10650 | 0.0 | - |
0.5430 | 10700 | 0.0002 | - |
0.5455 | 10750 | 0.0 | - |
0.5481 | 10800 | 0.0 | - |
0.5506 | 10850 | 0.0005 | - |
0.5531 | 10900 | 0.0 | - |
0.5557 | 10950 | 0.0 | - |
0.5582 | 11000 | 0.0 | - |
0.5607 | 11050 | 0.0 | - |
0.5633 | 11100 | 0.0 | - |
0.5658 | 11150 | 0.0 | - |
0.5684 | 11200 | 0.0 | - |
0.5709 | 11250 | 0.0 | - |
0.5734 | 11300 | 0.0 | - |
0.5760 | 11350 | 0.0008 | - |
0.5785 | 11400 | 0.0 | - |
0.5810 | 11450 | 0.0024 | - |
0.5836 | 11500 | 0.0 | - |
0.5861 | 11550 | 0.0 | - |
0.5887 | 11600 | 0.0 | - |
0.5912 | 11650 | 0.0 | - |
0.5937 | 11700 | 0.001 | - |
0.5963 | 11750 | 0.0 | - |
0.5988 | 11800 | 0.0 | - |
0.6013 | 11850 | 0.0 | - |
0.6039 | 11900 | 0.0527 | - |
0.6064 | 11950 | 0.0021 | - |
0.6090 | 12000 | 0.0 | - |
0.6115 | 12050 | 0.0 | - |
0.6140 | 12100 | 0.0 | - |
0.6166 | 12150 | 0.0 | - |
0.6191 | 12200 | 0.0 | - |
0.6216 | 12250 | 0.0 | - |
0.6242 | 12300 | 0.0 | - |
0.6267 | 12350 | 0.0006 | - |
0.6292 | 12400 | 0.0 | - |
0.6318 | 12450 | 0.0 | - |
0.6343 | 12500 | 0.001 | - |
0.6369 | 12550 | 0.0017 | - |
0.6394 | 12600 | 0.0 | - |
0.6419 | 12650 | 0.0 | - |
0.6445 | 12700 | 0.0 | - |
0.6470 | 12750 | 0.0012 | - |
0.6495 | 12800 | 0.0 | - |
0.6521 | 12850 | 0.0 | - |
0.6546 | 12900 | 0.0 | - |
0.6572 | 12950 | 0.0434 | - |
0.6597 | 13000 | 0.0 | - |
0.6622 | 13050 | 0.0 | - |
0.6648 | 13100 | 0.0003 | - |
0.6673 | 13150 | 0.0 | - |
0.6698 | 13200 | 0.0 | - |
0.6724 | 13250 | 0.0003 | - |
0.6749 | 13300 | 0.0 | - |
0.6775 | 13350 | 0.0 | - |
0.6800 | 13400 | 0.0005 | - |
0.6825 | 13450 | 0.0 | - |
0.6851 | 13500 | 0.0011 | - |
0.6876 | 13550 | 0.0475 | - |
0.6901 | 13600 | 0.0 | - |
0.6927 | 13650 | 0.0007 | - |
0.6952 | 13700 | 0.0 | - |
0.6978 | 13750 | 0.0 | - |
0.7003 | 13800 | 0.0 | - |
0.7028 | 13850 | 0.0 | - |
0.7054 | 13900 | 0.0 | - |
0.7079 | 13950 | 0.0015 | - |
0.7104 | 14000 | 0.0034 | - |
0.7130 | 14050 | 0.0009 | - |
0.7155 | 14100 | 0.0 | - |
0.7181 | 14150 | 0.0009 | - |
0.7206 | 14200 | 0.0 | - |
0.7231 | 14250 | 0.0003 | - |
0.7257 | 14300 | 0.0004 | - |
0.7282 | 14350 | 0.0 | - |
0.7307 | 14400 | 0.0003 | - |
0.7333 | 14450 | 0.0 | - |
0.7358 | 14500 | 0.0 | - |
0.7384 | 14550 | 0.0 | - |
0.7409 | 14600 | 0.0 | - |
0.7434 | 14650 | 0.0 | - |
0.7460 | 14700 | 0.0018 | - |
0.7485 | 14750 | 0.0012 | - |
0.7510 | 14800 | 0.0 | - |
0.7536 | 14850 | 0.0 | - |
0.7561 | 14900 | 0.0013 | - |
0.7587 | 14950 | 0.0 | - |
0.7612 | 15000 | 0.0 | - |
0.7637 | 15050 | 0.0 | - |
0.7663 | 15100 | 0.0 | - |
0.7688 | 15150 | 0.0 | - |
0.7713 | 15200 | 0.0 | - |
0.7739 | 15250 | 0.0 | - |
0.7764 | 15300 | 0.0 | - |
0.7790 | 15350 | 0.0 | - |
0.7815 | 15400 | 0.0 | - |
0.7840 | 15450 | 0.0 | - |
0.7866 | 15500 | 0.0 | - |
0.7891 | 15550 | 0.0 | - |
0.7916 | 15600 | 0.0004 | - |
0.7942 | 15650 | 0.0005 | - |
0.7967 | 15700 | 0.0 | - |
0.7992 | 15750 | 0.0 | - |
0.8018 | 15800 | 0.0 | - |
0.8043 | 15850 | 0.0 | - |
0.8069 | 15900 | 0.0 | - |
0.8094 | 15950 | 0.0555 | - |
0.8119 | 16000 | 0.0 | - |
0.8145 | 16050 | 0.0 | - |
0.8170 | 16100 | 0.0 | - |
0.8195 | 16150 | 0.0 | - |
0.8221 | 16200 | 0.0 | - |
0.8246 | 16250 | 0.0007 | - |
0.8272 | 16300 | 0.0 | - |
0.8297 | 16350 | 0.0 | - |
0.8322 | 16400 | 0.0 | - |
0.8348 | 16450 | 0.0003 | - |
0.8373 | 16500 | 0.0 | - |
0.8398 | 16550 | 0.0012 | - |
0.8424 | 16600 | 0.0 | - |
0.8449 | 16650 | 0.0 | - |
0.8475 | 16700 | 0.0 | - |
0.8500 | 16750 | 0.0 | - |
0.8525 | 16800 | 0.0 | - |
0.8551 | 16850 | 0.0 | - |
0.8576 | 16900 | 0.0007 | - |
0.8601 | 16950 | 0.0 | - |
0.8627 | 17000 | 0.001 | - |
0.8652 | 17050 | 0.0 | - |
0.8678 | 17100 | 0.0 | - |
0.8703 | 17150 | 0.0 | - |
0.8728 | 17200 | 0.0 | - |
0.8754 | 17250 | 0.0 | - |
0.8779 | 17300 | 0.0 | - |
0.8804 | 17350 | 0.0 | - |
0.8830 | 17400 | 0.0007 | - |
0.8855 | 17450 | 0.0 | - |
0.8881 | 17500 | 0.0 | - |
0.8906 | 17550 | 0.0505 | - |
0.8931 | 17600 | 0.0 | - |
0.8957 | 17650 | 0.0 | - |
0.8982 | 17700 | 0.0008 | - |
0.9007 | 17750 | 0.0 | - |
0.9033 | 17800 | 0.0003 | - |
0.9058 | 17850 | 0.0 | - |
0.9084 | 17900 | 0.0 | - |
0.9109 | 17950 | 0.0009 | - |
0.9134 | 18000 | 0.0 | - |
0.9160 | 18050 | 0.0 | - |
0.9185 | 18100 | 0.0 | - |
0.9210 | 18150 | 0.0 | - |
0.9236 | 18200 | 0.0 | - |
0.9261 | 18250 | 0.0 | - |
0.9287 | 18300 | 0.0 | - |
0.9312 | 18350 | 0.0008 | - |
0.9337 | 18400 | 0.0 | - |
0.9363 | 18450 | 0.0 | - |
0.9388 | 18500 | 0.0 | - |
0.9413 | 18550 | 0.0 | - |
0.9439 | 18600 | 0.0 | - |
0.9464 | 18650 | 0.0 | - |
0.9489 | 18700 | 0.0 | - |
0.9515 | 18750 | 0.0 | - |
0.9540 | 18800 | 0.0 | - |
0.9566 | 18850 | 0.0 | - |
0.9591 | 18900 | 0.0 | - |
0.9616 | 18950 | 0.0 | - |
0.9642 | 19000 | 0.0 | - |
0.9667 | 19050 | 0.0 | - |
0.9692 | 19100 | 0.0 | - |
0.9718 | 19150 | 0.0 | - |
0.9743 | 19200 | 0.0 | - |
0.9769 | 19250 | 0.0 | - |
0.9794 | 19300 | 0.0005 | - |
0.9819 | 19350 | 0.0 | - |
0.9845 | 19400 | 0.0 | - |
0.9870 | 19450 | 0.0 | - |
0.9895 | 19500 | 0.0 | - |
0.9921 | 19550 | 0.0011 | - |
0.9946 | 19600 | 0.0 | - |
0.9972 | 19650 | 0.0 | - |
0.9997 | 19700 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- spaCy: 3.6.1
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}