uncensored
Neko-Institute-of-Science's picture
will update checkpoints everyday.
c4856c5
|
raw
history blame
1 kB
---
datasets:
- gozfarb/ShareGPT_Vicuna_unfiltered
---
# Convert tools
https://github.com/practicaldreamer/vicuna_to_alpaca
# Training tool
https://github.com/oobabooga/text-generation-webui
ATM I'm using 2023.05.04v0 of the dataset and training full context.
# Notes:
So im only training 1 epoch as full context 30b takes a long time to train.
My 1 epoch will take me 8 days lol but lucly the LoRA feels fully functinal at epoch 1 as shown on my 13b one.
Also I will be uploading checkpoints almost everyday.
# How to test?
1. Download LLaMA-30B-HF: https://huggingface.co/Neko-Institute-of-Science/LLaMA-30B-HF
2. Replace special_tokens_map.json and tokenizer_config.json using the ones on this repo.
3. Rename LLaMA-30B-HF to vicuna-30b
4. Load ooba: ```python server.py --listen --model vicuna-30b --load-in-8bit --chat --lora checkpoint-xxxx```
5. Instruct mode: Vicuna-v1 it will load Vicuna-v0 by defualt
# Want to see it Training?
https://wandb.ai/neko-science/VicUnLocked/runs/vx8yzwi7