Nexspear's picture
End of training
cfae96d verified
metadata
library_name: peft
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: 788ae909-c955-4c20-838a-bd73f27d0c26
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - ce7794d07c233443_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ce7794d07c233443_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Nexspear/788ae909-c955-4c20-838a-bd73f27d0c26
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 72GB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/ce7794d07c233443_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 788ae909-c955-4c20-838a-bd73f27d0c26
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: 788ae909-c955-4c20-838a-bd73f27d0c26
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

788ae909-c955-4c20-838a-bd73f27d0c26

This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3609

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0007 1 10.3783
10.3792 0.0035 5 10.3779
10.3792 0.0070 10 10.3764
10.3717 0.0105 15 10.3743
10.375 0.0140 20 10.3718
10.3716 0.0175 25 10.3688
10.3664 0.0211 30 10.3658
10.3652 0.0246 35 10.3633
10.3625 0.0281 40 10.3617
10.3589 0.0316 45 10.3610
10.3625 0.0351 50 10.3609

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1