File size: 8,169 Bytes
9e5a121
 
 
 
23db7d8
 
 
d3c471f
 
23db7d8
d3c471f
23db7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e5a121
23db7d8
9e5a121
23db7d8
 
 
42e3cb2
23db7d8
 
42e3cb2
23db7d8
9e5a121
 
23db7d8
9e5a121
23db7d8
 
9e5a121
23db7d8
 
 
9e5a121
23db7d8
 
 
 
9e5a121
d3c471f
9e5a121
23db7d8
9e5a121
d3c471f
9e5a121
23db7d8
 
 
9e5a121
23db7d8
9e5a121
 
23db7d8
9e5a121
23db7d8
9e5a121
 
23db7d8
9e5a121
 
23db7d8
 
 
 
 
 
 
 
 
 
9e5a121
 
23db7d8
 
 
 
 
 
9e5a121
23db7d8
 
9e5a121
23db7d8
 
 
 
 
 
 
 
 
 
 
9e5a121
23db7d8
9e5a121
23db7d8
9e5a121
23db7d8
9e5a121
23db7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa8266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23db7d8
daa8266
878fb8d
23db7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa8266
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247




---
license: apache-2.0
datasets:
- NickyNicky/oasst2_clusters
- OpenAssistant/oasst2
model:
- google/gemma-2b-it
language:
- bg
- ca
- cs
- da
- de
- en
- es
- fr
- hr
- hu
- it
- nl
- pl
- pt
- ro
- ru
- sl
- sr
- sv
- uk

library_name: transformers

widget:
- text: |
    <bos><start_of_turn>system
    You are a helpful AI assistant.<end_of_turn>
    <start_of_turn>user
    escribe una historia de 100 palabras<end_of_turn>
    <start_of_turn>model\n    
---


![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/YXqUXFjX8uIJT-mdOnM1h.png)

```
reference data model:

  datasets:
    - lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
      link: https://huggingface.co/datasets/NickyNicky/oasst2_clusters

  model:
    - google/gemma-2b-it
      Link:
        https://huggingface.co/google/gemma-2b-it

    base fine tune: google/gemma-2b-it

  Epoch: 3

  future experts: 8

  Eval model:
    - link:
        soon

```


## train/loss 0.95

![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/T_Din2d6NjAt75ImpSOrs.png)


## 


```Python
!python -m pip install --upgrade pip
!pip install "torch>=2.1.1" -U
!pip install torchaudio==2.2.0
!pip install -q datasets trl peft bitsandbytes sentencepiece wandb
!pip install -q accelerate safetensors deepspeed
!pip install -q scipy ninja -U
!pip install -q -U transformers==4.38.0
!pip install flash-attn==2.5.5 --no-build-isolation
```


## Version
```py
import torch
torch.__version__
#OUTPUTS: ('2.2.0+cu121' )
```

## How to use
```py

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
    GenerationConfig,
    TextIteratorStreamer,
)

from transformers import StoppingCriteria, StoppingCriteriaList

import torch

model_id='NickyNicky/gemma-2b-it_oasst2_all_chatML_V1'

model = AutoModelForCausalLM.from_pretrained(model_id,
                                             device_map="auto",
                                             trust_remote_code=True,
                                             torch_dtype=torch.bfloat16,
                                             attn_implementation="flash_attention_2",
                                             # load_in_4bit=True,
                                             # low_cpu_mem_usage= True,

                                             )

max_length=2048
print("max_length",max_length)


tokenizer = AutoTokenizer.from_pretrained(model_id,
                                          # use_fast = False,
                                          max_length=max_length,)


class ListOfTokensStoppingCriteria(StoppingCriteria):
    """
    Clase para definir un criterio de parada basado en una lista de tokens específicos.
    """
    def __init__(self, tokenizer, stop_tokens):
        self.tokenizer = tokenizer
        # Codifica cada token de parada y guarda sus IDs en una lista
        self.stop_token_ids_list = [tokenizer.encode(stop_token, add_special_tokens=False) for stop_token in stop_tokens]

    def __call__(self, input_ids, scores, **kwargs):
        # Verifica si los últimos tokens generados coinciden con alguno de los conjuntos de tokens de parada
        for stop_token_ids in self.stop_token_ids_list:
            len_stop_tokens = len(stop_token_ids)
            if len(input_ids[0]) >= len_stop_tokens:
                if input_ids[0, -len_stop_tokens:].tolist() == stop_token_ids:
                    return True
        return False

# Uso del criterio de parada personalizado
stop_tokens = ["<end_of_turn>"]  # Lista de tokens de parada

# Inicializa tu criterio de parada con el tokenizer y la lista de tokens de parada
stopping_criteria = ListOfTokensStoppingCriteria(tokenizer, stop_tokens)

# Añade tu criterio de parada a una StoppingCriteriaList
stopping_criteria_list = StoppingCriteriaList([stopping_criteria])


#EXAMPLE #1
input_text = f"""<bos><start_of_turn>system
You are a helpful AI assistant.<end_of_turn>
<start_of_turn>user
**News:**
he Texas Blockchain Council (TBC) and Bitcoin mining firm Riot Platforms have won a favorable ruling from a United States District Judge in a lawsuit against several United States energy officials.
On February 22, Cointelegraph reported that the TBC and Riot alleged the U.S. Department of Energy, Energy Information Administration (EIA), Office of Management and Budget (OMB) and their leadership sought an “invasive” data collection from cryptocurrency miners.
According to a February 23 filing in the United States District Court for the Western District of Texas, the TBC and Riot convinced the judge that irreversible harm would happen without a temporary restraining order (TRO) against further data collection.
As a result, the court enforced a TRO which prohibits the EIA from requiring crypto miners to respond to the survey, as well as prohibiting the EIA from sharing any data that has already been received from the survey.
“The Court finds that Plaintiffs have shown through a verified complaint and supporting evidence that immediate and irreparable injury, loss, or damage will result if a TRO is not issued.”


Instruccion:
- responde en español.
- has un análisis sobre el contexto de la noticia y buscar información relevante para poder responder satisfactoriamente.
- has 5 preguntas importantes y sus respuestas.

en español responde solo en json:
```json
{
  "analisis_noticia": "",
  "preguntas_respuestas": [
    {
      "pregunta": "",
      "respuesta": ""
    }
  ]
}```<end_of_turn>
<start_of_turn>model
"""

inputs = tokenizer.encode(txt,
                          return_tensors="pt",
                          add_special_tokens=False).to("cuda:0")
max_new_tokens=1500
generation_config = GenerationConfig(
              max_new_tokens=max_new_tokens,
              temperature=0.15,
              # top_p=0.55,
              top_k=50,
              repetition_penalty=1.1,
              do_sample=True,
          )
outputs = base_model.generate(generation_config=generation_config,
                         input_ids=inputs,
                         stopping_criteria=stopping_criteria_list,)
print(tokenizer.decode(outputs[0], skip_special_tokens=False) )
```

```
'''
### OUTPUT EXAMPLE
<start_of_turn>model
{
  "analisis_noticia": "Texas Blockchain Council and Bitcoin mining firm Riot Platforms have won a favorable ruling from a United States District Judge in a lawsuit against several United States energy officials.",
  "preguntas_respuestas": [
    {
      "pregunta": "¿Cuál es el objetivo principal del Texas Blockchain Council?",
      "respuesta": "El objetivo principal del Texas Blockchain Council es promover el uso de las tecnologías blockchain en Texas y en todo el mundo."
    },
    {
      "pregunta": "¿Qué tipo de tecnología blockchain se utiliza más comúnmente en Texas?",
      "respuesta": "La tecnología blockchain utilizada más comúnmente en Texas es la criptomoneda Bitcoin."
    },
    {
      "pregunta": "¿Cómo se utilizan las criptomonedas en el ámbito empresarial y gubernamental en Texas?",
      "respuesta": "Las criptomonedas son utilizadas por empresas y gobiernos gubernamentales en Texas para mejorar la eficiencia y seguridad en el proceso de pago."
    },
    {
      "pregunta": "¿Qué medidas están siendo tomadas para proteger los derechos de propiedad intelectual y la privacidad de los ciudadanos en Texas?",
      "respuesta": "Texas está trabajando junto con otras entidades gubernamentales y organizaciones empresariales para desarrollar leyes que protegen los derechos de propiedad intelectual y la privacidad de los ciudadanos."
    },
    {
      "pregunta": "¿Cómo se espera que las nuevas tecnologías de blockchain impacten el futuro económico y social de Texas?",
      "respuesta": "Se espera que estas nuevas tecnologías de blockchain tengan un impacto positivo en el futuro económico y social de Texas al permitir una mayor transparencia, eficiencia y seguridad en el sistema financiero."
    }
  ]
}<end_of_turn>
'''
```