Nitral
Adding Evaluation Results (#1)
94a5c7c verified
metadata
license: other
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - Test157t/Pasta-Sea-7b-128k
  - Locutusque/Hercules-2.0-Mistral-7B
model-index:
  - name: HerculeanSea-7b-128k
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 66.21
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-7b-128k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.8
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-7b-128k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.28
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-7b-128k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 55.77
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-7b-128k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 80.74
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-7b-128k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 58.38
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-7b-128k
          name: Open LLM Leaderboard

image/jpeg Thanks to bartowski we have /HerculeanSea-7b-128k-exl2 https://huggingface.co/bartowski/HerculeanSea-7b-128k-exl2

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

slices:
  - sources:
      - model: Test157t/Pasta-Sea-7b-128k
        layer_range: [0, 32]
      - model: Locutusque/Hercules-2.0-Mistral-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: Test157t/Pasta-Sea-7b-128k
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: float16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 68.53
AI2 Reasoning Challenge (25-Shot) 66.21
HellaSwag (10-Shot) 85.80
MMLU (5-Shot) 64.28
TruthfulQA (0-shot) 55.77
Winogrande (5-shot) 80.74
GSM8k (5-shot) 58.38