SentenceTransformer based on jinaai/jina-embeddings-v2-base-code
This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v2-base-code. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: jinaai/jina-embeddings-v2-base-code
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nutanix/jina-embeddings-v2-base-code-mbpp")
# Run inference
sentences = [
'Write a function to find sum and average of first n natural numbers.',
'def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\n total = total + value\r\n average = total / number\r\n return (total,average)',
'def long_words(n, str):\r\n word_len = []\r\n txt = str.split(" ")\r\n for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\n return word_len\t',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
sts-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.4795 |
dot_accuracy | 0.3189 |
manhattan_accuracy | 0.4905 |
euclidean_accuracy | 0.4795 |
max_accuracy | 0.4905 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | sts-dev_max_accuracy |
---|---|---|---|
0 | 0 | - | 0.5027 |
0.0050 | 100 | 5.0 | - |
0.0101 | 200 | 5.0 | - |
0.0151 | 300 | 4.9999 | - |
0.0202 | 400 | 5.0001 | - |
0.0252 | 500 | 5.0 | - |
0.0302 | 600 | 5.0 | - |
0.0353 | 700 | 4.9999 | - |
0.0403 | 800 | 5.0001 | - |
0.0453 | 900 | 5.0 | - |
0.0504 | 1000 | 5.0001 | - |
0.0554 | 1100 | 4.9999 | - |
0.0605 | 1200 | 5.0 | - |
0.0655 | 1300 | 5.0 | - |
0.0705 | 1400 | 4.9999 | - |
0.0756 | 1500 | 5.0 | - |
0.0806 | 1600 | 4.9999 | - |
0.0857 | 1700 | 5.0001 | - |
0.0907 | 1800 | 5.0001 | - |
0.0957 | 1900 | 5.0 | - |
0.1008 | 2000 | 5.0001 | - |
0.1058 | 2100 | 5.0 | - |
0.1109 | 2200 | 4.9999 | - |
0.1159 | 2300 | 4.9999 | - |
0.1209 | 2400 | 5.0 | - |
0.1260 | 2500 | 5.0 | - |
0.1310 | 2600 | 5.0001 | - |
0.1360 | 2700 | 4.9999 | - |
0.1411 | 2800 | 5.0001 | - |
0.1461 | 2900 | 5.0001 | - |
0.1512 | 3000 | 5.0 | - |
0.1562 | 3100 | 5.0001 | - |
0.1612 | 3200 | 4.9999 | - |
0.1663 | 3300 | 5.0001 | - |
0.1713 | 3400 | 4.9999 | - |
0.1764 | 3500 | 4.9999 | - |
0.1814 | 3600 | 4.9999 | - |
0.1864 | 3700 | 5.0 | - |
0.1915 | 3800 | 4.9999 | - |
0.1965 | 3900 | 5.0 | - |
0.2016 | 4000 | 5.0 | - |
0.2066 | 4100 | 5.0 | - |
0.2116 | 4200 | 5.0002 | - |
0.2167 | 4300 | 5.0002 | - |
0.2217 | 4400 | 5.0 | - |
0.2267 | 4500 | 5.0001 | - |
0.2318 | 4600 | 5.0001 | - |
0.2368 | 4700 | 5.0001 | - |
0.2419 | 4800 | 4.9998 | - |
0.2469 | 4900 | 5.0 | - |
0.2519 | 5000 | 4.9999 | - |
0.2570 | 5100 | 4.9999 | - |
0.2620 | 5200 | 5.0001 | - |
0.2671 | 5300 | 5.0001 | - |
0.2721 | 5400 | 4.9999 | - |
0.2771 | 5500 | 5.0 | - |
0.2822 | 5600 | 5.0002 | - |
0.2872 | 5700 | 5.0002 | - |
0.2923 | 5800 | 4.9999 | - |
0.2973 | 5900 | 5.0 | - |
0.3023 | 6000 | 5.0001 | - |
0.3074 | 6100 | 4.9999 | - |
0.3124 | 6200 | 4.9997 | - |
0.3174 | 6300 | 4.9999 | - |
0.3225 | 6400 | 5.0 | - |
0.3275 | 6500 | 4.9998 | - |
0.3326 | 6600 | 5.0 | - |
0.3376 | 6700 | 4.9998 | - |
0.3426 | 6800 | 5.0001 | - |
0.3477 | 6900 | 5.0002 | - |
0.3527 | 7000 | 5.0 | - |
0.3578 | 7100 | 4.9998 | - |
0.3628 | 7200 | 5.0003 | - |
0.3678 | 7300 | 5.0 | - |
0.3729 | 7400 | 5.0002 | - |
0.3779 | 7500 | 5.0 | - |
0.3829 | 7600 | 5.0001 | - |
0.3880 | 7700 | 5.0002 | - |
0.3930 | 7800 | 5.0001 | - |
0.3981 | 7900 | 5.0001 | - |
0.4031 | 8000 | 5.0 | - |
0.4081 | 8100 | 4.9998 | - |
0.4132 | 8200 | 4.9999 | - |
0.4182 | 8300 | 5.0001 | - |
0.4233 | 8400 | 5.0001 | - |
0.4283 | 8500 | 5.0 | - |
0.4333 | 8600 | 5.0002 | - |
0.4384 | 8700 | 5.0001 | - |
0.4434 | 8800 | 5.0 | - |
0.4485 | 8900 | 4.9996 | - |
0.4535 | 9000 | 4.9999 | - |
0.4585 | 9100 | 5.0 | - |
0.4636 | 9200 | 4.9999 | - |
0.4686 | 9300 | 4.9999 | - |
0.4736 | 9400 | 4.9998 | - |
0.4787 | 9500 | 5.0001 | - |
0.4837 | 9600 | 4.9998 | - |
0.4888 | 9700 | 4.9999 | - |
0.4938 | 9800 | 5.0 | - |
0.4988 | 9900 | 4.9998 | - |
0.5039 | 10000 | 5.0 | - |
0.5089 | 10100 | 5.0002 | - |
0.5140 | 10200 | 5.0003 | - |
0.5190 | 10300 | 4.9998 | - |
0.5240 | 10400 | 4.9999 | - |
0.5291 | 10500 | 5.0 | - |
0.5341 | 10600 | 4.9999 | - |
0.5392 | 10700 | 5.0 | - |
0.5442 | 10800 | 5.0001 | - |
0.5492 | 10900 | 4.9999 | - |
0.5543 | 11000 | 5.0 | - |
0.5593 | 11100 | 4.9999 | - |
0.5643 | 11200 | 5.0 | - |
0.5694 | 11300 | 4.9999 | - |
0.5744 | 11400 | 4.9997 | - |
0.5795 | 11500 | 5.0002 | - |
0.5845 | 11600 | 4.9999 | - |
0.5895 | 11700 | 5.0001 | - |
0.5946 | 11800 | 5.0001 | - |
0.5996 | 11900 | 5.0004 | - |
0.6047 | 12000 | 4.9998 | - |
0.6097 | 12100 | 5.0002 | - |
0.6147 | 12200 | 4.9998 | - |
0.6198 | 12300 | 5.0001 | - |
0.6248 | 12400 | 5.0001 | - |
0.6298 | 12500 | 5.0001 | - |
0.6349 | 12600 | 4.9999 | - |
0.6399 | 12700 | 5.0001 | - |
0.6450 | 12800 | 4.9999 | - |
0.6500 | 12900 | 5.0001 | - |
0.6550 | 13000 | 4.9999 | - |
0.6601 | 13100 | 5.0002 | - |
0.6651 | 13200 | 5.0001 | - |
0.6702 | 13300 | 5.0002 | - |
0.6752 | 13400 | 4.9997 | - |
0.6802 | 13500 | 5.0001 | - |
0.6853 | 13600 | 4.9996 | - |
0.6903 | 13700 | 4.9999 | - |
0.6954 | 13800 | 5.0002 | - |
0.7004 | 13900 | 4.9997 | - |
0.7054 | 14000 | 5.0 | - |
0.7105 | 14100 | 5.0001 | - |
0.7155 | 14200 | 5.0001 | - |
0.7205 | 14300 | 4.9999 | - |
0.7256 | 14400 | 4.9999 | - |
0.7306 | 14500 | 4.9998 | - |
0.7357 | 14600 | 5.0 | - |
0.7407 | 14700 | 5.0002 | - |
0.7457 | 14800 | 5.0001 | - |
0.7508 | 14900 | 4.9998 | - |
0.7558 | 15000 | 5.0002 | - |
0.7609 | 15100 | 5.0002 | - |
0.7659 | 15200 | 5.0 | - |
0.7709 | 15300 | 5.0002 | - |
0.7760 | 15400 | 5.0 | - |
0.7810 | 15500 | 5.0001 | - |
0.7861 | 15600 | 5.0 | - |
0.7911 | 15700 | 5.0004 | - |
0.7961 | 15800 | 5.0 | - |
0.8012 | 15900 | 5.0001 | - |
0.8062 | 16000 | 5.0003 | - |
0.8112 | 16100 | 4.9999 | - |
0.8163 | 16200 | 5.0 | - |
0.8213 | 16300 | 4.9999 | - |
0.8264 | 16400 | 5.0 | - |
0.8314 | 16500 | 4.9999 | - |
0.8364 | 16600 | 4.9998 | - |
0.8415 | 16700 | 4.9998 | - |
0.8465 | 16800 | 5.0002 | - |
0.8516 | 16900 | 4.9999 | - |
0.8566 | 17000 | 4.9999 | - |
0.8616 | 17100 | 4.9997 | - |
0.8667 | 17200 | 5.0001 | - |
0.8717 | 17300 | 4.9999 | - |
0.8768 | 17400 | 5.0001 | - |
0.8818 | 17500 | 4.9999 | - |
0.8868 | 17600 | 5.0001 | - |
0.8919 | 17700 | 5.0001 | - |
0.8969 | 17800 | 5.0001 | - |
0.9019 | 17900 | 4.9996 | - |
0.9070 | 18000 | 5.0001 | - |
0.9120 | 18100 | 4.9997 | - |
0.9171 | 18200 | 5.0001 | - |
0.9221 | 18300 | 4.9998 | - |
0.9271 | 18400 | 4.9997 | - |
0.9322 | 18500 | 4.9999 | - |
0.9372 | 18600 | 5.0001 | - |
0.9423 | 18700 | 5.0004 | - |
0.9473 | 18800 | 4.9997 | - |
0.9523 | 18900 | 4.9999 | - |
0.9574 | 19000 | 5.0001 | - |
0.9624 | 19100 | 4.9999 | - |
0.9674 | 19200 | 5.0 | - |
0.9725 | 19300 | 4.9999 | - |
0.9775 | 19400 | 4.9999 | - |
0.9826 | 19500 | 4.9999 | - |
0.9876 | 19600 | 4.9998 | - |
0.9926 | 19700 | 5.0 | - |
0.9977 | 19800 | 4.9999 | - |
1.0 | 19846 | - | 0.4905 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Nutanix/jina-embeddings-v2-base-code-mbpp
Base model
jinaai/jina-embeddings-v2-base-codeEvaluation results
- Cosine Accuracy on sts devself-reported0.479
- Dot Accuracy on sts devself-reported0.319
- Manhattan Accuracy on sts devself-reported0.490
- Euclidean Accuracy on sts devself-reported0.480
- Max Accuracy on sts devself-reported0.490