|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:557850 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: tomaarsen/mpnet-base-all-nli-triplet |
|
datasets: [] |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط |
|
النظيفة |
|
sentences: |
|
- رجل يقدم عرضاً |
|
- هناك رجل بالخارج قرب الشاطئ |
|
- رجل يجلس على أريكه |
|
- source_sentence: رجل يقفز إلى سريره القذر |
|
sentences: |
|
- السرير قذر. |
|
- رجل يضحك أثناء غسيل الملابس |
|
- الرجل على القمر |
|
- source_sentence: الفتيات بالخارج |
|
sentences: |
|
- امرأة تلف الخيط إلى كرات بجانب كومة من الكرات |
|
- فتيان يركبان في جولة متعة |
|
- ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط والثالثة تتحدث |
|
إليهن |
|
- source_sentence: الرجل يرتدي قميصاً أزرق. |
|
sentences: |
|
- رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة حمراء |
|
مع الماء في الخلفية. |
|
- كتاب القصص مفتوح |
|
- رجل يرتدي قميص أسود يعزف على الجيتار. |
|
- source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة |
|
شابة. |
|
sentences: |
|
- ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه |
|
- رجل يستلقي على وجهه على مقعد في الحديقة. |
|
- الشاب نائم بينما الأم تقود ابنتها إلى الحديقة |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on tomaarsen/mpnet-base-all-nli-triplet |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.66986244175229 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.675651628513557 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6943200977280434 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6839707658313092 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6973190148612566 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6872926092972673 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5534197296097646 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5421965591416092 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6973190148612566 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6872926092972673 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6628171358537143 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.670314701212355 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6916567677127377 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6815748132707206 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6948756461188812 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.685329042213794 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5229142840207227 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5113740757424073 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6948756461188812 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.685329042213794 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6368313837029833 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6512526280069127 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6832129716443456 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.674638334774044 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6843664039671002 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6760040651639672 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.4266095536126992 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.4179376458107888 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6843664039671002 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6760040651639672 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6147896744901056 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6354730852658397 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6730782159165468 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6652649799789521 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.676407799774529 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6691409653459247 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.35130869784942953 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.3445374275232203 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.676407799774529 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6691409653459247 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.5789158725954748 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6081197115891086 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6578631744829946 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6518503436513217 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6629734628760299 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6570510967281272 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.24034366392620327 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.2331392769925126 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6629734628760299 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6570510967281272 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on tomaarsen/mpnet-base-all-nli-triplet |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [tomaarsen/mpnet-base-all-nli-triplet](https://huggingface.co/tomaarsen/mpnet-base-all-nli-triplet) on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [tomaarsen/mpnet-base-all-nli-triplet](https://huggingface.co/tomaarsen/mpnet-base-all-nli-triplet) <!-- at revision e88732e5620f3592bf6566604be9a6a5cad814ec --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Omartificial-Intelligence-Space/mpnet-base-all-nli-triplet-Arabic-mpnet_base") |
|
# Run inference |
|
sentences = [ |
|
'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.', |
|
'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه', |
|
'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6699 | |
|
| **spearman_cosine** | **0.6757** | |
|
| pearson_manhattan | 0.6943 | |
|
| spearman_manhattan | 0.684 | |
|
| pearson_euclidean | 0.6973 | |
|
| spearman_euclidean | 0.6873 | |
|
| pearson_dot | 0.5534 | |
|
| spearman_dot | 0.5422 | |
|
| pearson_max | 0.6973 | |
|
| spearman_max | 0.6873 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6628 | |
|
| **spearman_cosine** | **0.6703** | |
|
| pearson_manhattan | 0.6917 | |
|
| spearman_manhattan | 0.6816 | |
|
| pearson_euclidean | 0.6949 | |
|
| spearman_euclidean | 0.6853 | |
|
| pearson_dot | 0.5229 | |
|
| spearman_dot | 0.5114 | |
|
| pearson_max | 0.6949 | |
|
| spearman_max | 0.6853 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6368 | |
|
| **spearman_cosine** | **0.6513** | |
|
| pearson_manhattan | 0.6832 | |
|
| spearman_manhattan | 0.6746 | |
|
| pearson_euclidean | 0.6844 | |
|
| spearman_euclidean | 0.676 | |
|
| pearson_dot | 0.4266 | |
|
| spearman_dot | 0.4179 | |
|
| pearson_max | 0.6844 | |
|
| spearman_max | 0.676 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6148 | |
|
| **spearman_cosine** | **0.6355** | |
|
| pearson_manhattan | 0.6731 | |
|
| spearman_manhattan | 0.6653 | |
|
| pearson_euclidean | 0.6764 | |
|
| spearman_euclidean | 0.6691 | |
|
| pearson_dot | 0.3513 | |
|
| spearman_dot | 0.3445 | |
|
| pearson_max | 0.6764 | |
|
| spearman_max | 0.6691 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.5789 | |
|
| **spearman_cosine** | **0.6081** | |
|
| pearson_manhattan | 0.6579 | |
|
| spearman_manhattan | 0.6519 | |
|
| pearson_euclidean | 0.663 | |
|
| spearman_euclidean | 0.6571 | |
|
| pearson_dot | 0.2403 | |
|
| spearman_dot | 0.2331 | |
|
| pearson_max | 0.663 | |
|
| spearman_max | 0.6571 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
|
|
* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
* Size: 557,850 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 12 tokens</li><li>mean: 23.93 tokens</li><li>max: 155 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 29.62 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 33.95 tokens</li><li>max: 149 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:------------------------------------------------------------|:--------------------------------------------|:------------------------------------| |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> | |
|
| <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> | <code>الاطفال يتجهمون</code> | |
|
| <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> | <code>الصبي يتزلج على الرصيف</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
|
|
* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
* Size: 6,584 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 12 tokens</li><li>mean: 49.5 tokens</li><li>max: 246 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 23.66 tokens</li><li>max: 103 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 25.33 tokens</li><li>max: 82 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------| |
|
| <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> | |
|
| <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> | |
|
| <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 0.0229 | 200 | 21.5318 | - | - | - | - | - | |
|
| 0.0459 | 400 | 17.2344 | - | - | - | - | - | |
|
| 0.0688 | 600 | 15.393 | - | - | - | - | - | |
|
| 0.0918 | 800 | 13.7897 | - | - | - | - | - | |
|
| 0.1147 | 1000 | 13.534 | - | - | - | - | - | |
|
| 0.1377 | 1200 | 12.2683 | - | - | - | - | - | |
|
| 0.1606 | 1400 | 10.9271 | - | - | - | - | - | |
|
| 0.1835 | 1600 | 11.071 | - | - | - | - | - | |
|
| 0.2065 | 1800 | 10.0153 | - | - | - | - | - | |
|
| 0.2294 | 2000 | 9.8463 | - | - | - | - | - | |
|
| 0.2524 | 2200 | 10.0194 | - | - | - | - | - | |
|
| 0.2753 | 2400 | 9.8371 | - | - | - | - | - | |
|
| 0.2983 | 2600 | 9.6315 | - | - | - | - | - | |
|
| 0.3212 | 2800 | 8.9858 | - | - | - | - | - | |
|
| 0.3442 | 3000 | 9.1876 | - | - | - | - | - | |
|
| 0.3671 | 3200 | 8.8028 | - | - | - | - | - | |
|
| 0.3900 | 3400 | 8.6075 | - | - | - | - | - | |
|
| 0.4130 | 3600 | 8.4285 | - | - | - | - | - | |
|
| 0.4359 | 3800 | 8.1258 | - | - | - | - | - | |
|
| 0.4589 | 4000 | 8.2508 | - | - | - | - | - | |
|
| 0.4818 | 4200 | 7.8037 | - | - | - | - | - | |
|
| 0.5048 | 4400 | 7.7133 | - | - | - | - | - | |
|
| 0.5277 | 4600 | 7.5006 | - | - | - | - | - | |
|
| 0.5506 | 4800 | 7.7025 | - | - | - | - | - | |
|
| 0.5736 | 5000 | 7.7593 | - | - | - | - | - | |
|
| 0.5965 | 5200 | 7.6305 | - | - | - | - | - | |
|
| 0.6195 | 5400 | 7.7502 | - | - | - | - | - | |
|
| 0.6424 | 5600 | 7.5624 | - | - | - | - | - | |
|
| 0.6654 | 5800 | 7.5287 | - | - | - | - | - | |
|
| 0.6883 | 6000 | 7.4261 | - | - | - | - | - | |
|
| 0.7113 | 6200 | 7.239 | - | - | - | - | - | |
|
| 0.7342 | 6400 | 7.1631 | - | - | - | - | - | |
|
| 0.7571 | 6600 | 7.6865 | - | - | - | - | - | |
|
| 0.7801 | 6800 | 7.6124 | - | - | - | - | - | |
|
| 0.8030 | 7000 | 6.9936 | - | - | - | - | - | |
|
| 0.8260 | 7200 | 6.7331 | - | - | - | - | - | |
|
| 0.8489 | 7400 | 6.4542 | - | - | - | - | - | |
|
| 0.8719 | 7600 | 6.1994 | - | - | - | - | - | |
|
| 0.8948 | 7800 | 5.9798 | - | - | - | - | - | |
|
| 0.9177 | 8000 | 5.7808 | - | - | - | - | - | |
|
| 0.9407 | 8200 | 5.6952 | - | - | - | - | - | |
|
| 0.9636 | 8400 | 5.5082 | - | - | - | - | - | |
|
| 0.9866 | 8600 | 5.4421 | - | - | - | - | - | |
|
| 1.0095 | 8800 | 3.0309 | - | - | - | - | - | |
|
| 1.0026 | 9000 | 1.1835 | - | - | - | - | - | |
|
| 1.0256 | 9200 | 8.1196 | - | - | - | - | - | |
|
| 1.0485 | 9400 | 8.0326 | - | - | - | - | - | |
|
| 1.0715 | 9600 | 8.5028 | - | - | - | - | - | |
|
| 1.0944 | 9800 | 7.6923 | - | - | - | - | - | |
|
| 1.1174 | 10000 | 8.029 | - | - | - | - | - | |
|
| 1.1403 | 10200 | 7.5052 | - | - | - | - | - | |
|
| 1.1632 | 10400 | 7.1177 | - | - | - | - | - | |
|
| 1.1862 | 10600 | 6.9594 | - | - | - | - | - | |
|
| 1.2091 | 10800 | 6.6662 | - | - | - | - | - | |
|
| 1.2321 | 11000 | 6.6903 | - | - | - | - | - | |
|
| 1.2550 | 11200 | 6.9523 | - | - | - | - | - | |
|
| 1.2780 | 11400 | 6.676 | - | - | - | - | - | |
|
| 1.3009 | 11600 | 6.7141 | - | - | - | - | - | |
|
| 1.3238 | 11800 | 6.568 | - | - | - | - | - | |
|
| 1.3468 | 12000 | 6.8938 | - | - | - | - | - | |
|
| 1.3697 | 12200 | 6.3745 | - | - | - | - | - | |
|
| 1.3927 | 12400 | 6.2513 | - | - | - | - | - | |
|
| 1.4156 | 12600 | 6.2589 | - | - | - | - | - | |
|
| 1.4386 | 12800 | 6.1388 | - | - | - | - | - | |
|
| 1.4615 | 13000 | 6.1835 | - | - | - | - | - | |
|
| 1.4845 | 13200 | 5.9004 | - | - | - | - | - | |
|
| 1.5074 | 13400 | 5.7891 | - | - | - | - | - | |
|
| 1.5303 | 13600 | 5.6184 | - | - | - | - | - | |
|
| 1.5533 | 13800 | 5.9762 | - | - | - | - | - | |
|
| 1.5762 | 14000 | 5.9737 | - | - | - | - | - | |
|
| 1.5992 | 14200 | 5.8563 | - | - | - | - | - | |
|
| 1.6221 | 14400 | 5.8904 | - | - | - | - | - | |
|
| 1.6451 | 14600 | 5.8484 | - | - | - | - | - | |
|
| 1.6680 | 14800 | 5.8906 | - | - | - | - | - | |
|
| 1.6909 | 15000 | 5.7613 | - | - | - | - | - | |
|
| 1.7139 | 15200 | 5.5744 | - | - | - | - | - | |
|
| 1.7368 | 15400 | 5.6569 | - | - | - | - | - | |
|
| 1.7598 | 15600 | 5.7439 | - | - | - | - | - | |
|
| 1.7827 | 15800 | 5.5593 | - | - | - | - | - | |
|
| 1.8057 | 16000 | 5.2935 | - | - | - | - | - | |
|
| 1.8286 | 16200 | 5.088 | - | - | - | - | - | |
|
| 1.8516 | 16400 | 5.0167 | - | - | - | - | - | |
|
| 1.8745 | 16600 | 4.84 | - | - | - | - | - | |
|
| 1.8974 | 16800 | 4.6731 | - | - | - | - | - | |
|
| 1.9204 | 17000 | 4.6404 | - | - | - | - | - | |
|
| 1.9433 | 17200 | 4.6413 | - | - | - | - | - | |
|
| 1.9663 | 17400 | 4.4495 | - | - | - | - | - | |
|
| 1.9892 | 17600 | 4.4262 | - | - | - | - | - | |
|
| 2.0122 | 17800 | 2.01 | - | - | - | - | - | |
|
| 2.0053 | 18000 | 1.8418 | - | - | - | - | - | |
|
| 2.0282 | 18200 | 6.2714 | - | - | - | - | - | |
|
| 2.0512 | 18400 | 6.1742 | - | - | - | - | - | |
|
| 2.0741 | 18600 | 6.5996 | - | - | - | - | - | |
|
| 2.0971 | 18800 | 6.0907 | - | - | - | - | - | |
|
| 2.1200 | 19000 | 6.2418 | - | - | - | - | - | |
|
| 2.1429 | 19200 | 5.7817 | - | - | - | - | - | |
|
| 2.1659 | 19400 | 5.7073 | - | - | - | - | - | |
|
| 2.1888 | 19600 | 5.2645 | - | - | - | - | - | |
|
| 2.2118 | 19800 | 5.3451 | - | - | - | - | - | |
|
| 2.2347 | 20000 | 5.2453 | - | - | - | - | - | |
|
| 2.2577 | 20200 | 5.6161 | - | - | - | - | - | |
|
| 2.2806 | 20400 | 5.2289 | - | - | - | - | - | |
|
| 2.3035 | 20600 | 5.3888 | - | - | - | - | - | |
|
| 2.3265 | 20800 | 5.2483 | - | - | - | - | - | |
|
| 2.3494 | 21000 | 5.5791 | - | - | - | - | - | |
|
| 2.3724 | 21200 | 5.1643 | - | - | - | - | - | |
|
| 2.3953 | 21400 | 5.1231 | - | - | - | - | - | |
|
| 2.4183 | 21600 | 5.1055 | - | - | - | - | - | |
|
| 2.4412 | 21800 | 5.1778 | - | - | - | - | - | |
|
| 2.4642 | 22000 | 5.0466 | - | - | - | - | - | |
|
| 2.4871 | 22200 | 4.8321 | - | - | - | - | - | |
|
| 2.5100 | 22400 | 4.7056 | - | - | - | - | - | |
|
| 2.5330 | 22600 | 4.6858 | - | - | - | - | - | |
|
| 2.5559 | 22800 | 4.9189 | - | - | - | - | - | |
|
| 2.5789 | 23000 | 4.912 | - | - | - | - | - | |
|
| 2.6018 | 23200 | 4.8289 | - | - | - | - | - | |
|
| 2.6248 | 23400 | 4.8959 | - | - | - | - | - | |
|
| 2.6477 | 23600 | 4.9441 | - | - | - | - | - | |
|
| 2.6706 | 23800 | 4.9334 | - | - | - | - | - | |
|
| 2.6936 | 24000 | 4.8328 | - | - | - | - | - | |
|
| 2.7165 | 24200 | 4.601 | - | - | - | - | - | |
|
| 2.7395 | 24400 | 4.834 | - | - | - | - | - | |
|
| 2.7624 | 24600 | 5.152 | - | - | - | - | - | |
|
| 2.7854 | 24800 | 4.9232 | - | - | - | - | - | |
|
| 2.8083 | 25000 | 4.6556 | - | - | - | - | - | |
|
| 2.8312 | 25200 | 4.6229 | - | - | - | - | - | |
|
| 2.8542 | 25400 | 4.5768 | - | - | - | - | - | |
|
| 2.8771 | 25600 | 4.3619 | - | - | - | - | - | |
|
| 2.9001 | 25800 | 4.3608 | - | - | - | - | - | |
|
| 2.9230 | 26000 | 4.2834 | - | - | - | - | - | |
|
| 2.9403 | 26151 | - | 0.6355 | 0.6513 | 0.6703 | 0.6081 | 0.6757 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.9.18 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.40.0 |
|
- PyTorch: 2.2.2+cu121 |
|
- Accelerate: 0.26.1 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |