|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
import logging |
|
logger = logging.getLogger(__name__) |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as cp |
|
|
|
from transformers import AutoConfig, PreTrainedModel |
|
|
|
from timm.layers import drop_path, to_2tuple, trunc_normal_ |
|
from .modeling_config import VideoMAEv2Config |
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 400, |
|
'input_size': (3, 224, 224), |
|
'pool_size': None, |
|
'crop_pct': .9, |
|
'interpolation': 'bicubic', |
|
'mean': (0.5, 0.5, 0.5), |
|
'std': (0.5, 0.5, 0.5), |
|
**kwargs |
|
} |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return 'p={}'.format(self.drop_prob) |
|
|
|
|
|
class Mlp(nn.Module): |
|
|
|
def __init__(self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
|
|
|
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class CosAttention(nn.Module): |
|
|
|
def __init__(self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
attn_drop=0., |
|
proj_drop=0., |
|
attn_head_dim=None): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
|
|
|
|
if qk_scale is None: |
|
self.scale = nn.Parameter( |
|
torch.log(10 * torch.ones((num_heads, 1, 1))), |
|
requires_grad=True) |
|
else: |
|
self.scale = qk_scale |
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat( |
|
(self.q_bias, |
|
torch.zeros_like(self.v_bias, |
|
requires_grad=False), self.v_bias)) |
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[ |
|
2] |
|
|
|
attn = ( |
|
F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) |
|
|
|
|
|
logit_scale = torch.clamp(self.scale, max=4.6052).exp() |
|
|
|
attn = attn * logit_scale |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
|
|
def __init__(self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
attn_drop=0., |
|
proj_drop=0., |
|
attn_head_dim=None): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat( |
|
(self.q_bias, |
|
torch.zeros_like(self.v_bias, |
|
requires_grad=False), self.v_bias)) |
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[ |
|
2] |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
init_values=None, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
attn_head_dim=None, |
|
cos_attn=False): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
if cos_attn: |
|
self.attn = CosAttention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
attn_head_dim=attn_head_dim) |
|
else: |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
attn_head_dim=attn_head_dim) |
|
|
|
self.drop_path = DropPath( |
|
drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop) |
|
|
|
if init_values > 0: |
|
self.gamma_1 = nn.Parameter( |
|
init_values * torch.ones((dim)), requires_grad=True) |
|
self.gamma_2 = nn.Parameter( |
|
init_values * torch.ones((dim)), requires_grad=True) |
|
else: |
|
self.gamma_1, self.gamma_2 = None, None |
|
|
|
def forward(self, x): |
|
if self.gamma_1 is None: |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
num_frames=16, |
|
tubelet_size=2): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_spatial_patches = (img_size[0] // patch_size[0]) * ( |
|
img_size[1] // patch_size[1]) |
|
num_patches = num_spatial_patches * (num_frames // tubelet_size) |
|
|
|
self.img_size = img_size |
|
self.tubelet_size = tubelet_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
self.proj = nn.Conv3d( |
|
in_channels=in_chans, |
|
out_channels=embed_dim, |
|
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), |
|
stride=(self.tubelet_size, patch_size[0], patch_size[1])) |
|
|
|
def forward(self, x, **kwargs): |
|
B, C, T, H, W = x.shape |
|
assert H == self.img_size[0] and W == self.img_size[ |
|
1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
|
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
|
|
|
|
def get_sinusoid_encoding_table(n_position, d_hid): |
|
''' Sinusoid position encoding table ''' |
|
|
|
|
|
def get_position_angle_vec(position): |
|
return [ |
|
position / np.power(10000, 2 * (hid_j // 2) / d_hid) |
|
for hid_j in range(d_hid) |
|
] |
|
|
|
sinusoid_table = np.array( |
|
[get_position_angle_vec(pos_i) for pos_i in range(n_position)]) |
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) |
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) |
|
|
|
return torch.tensor( |
|
sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
|
|
def __init__(self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
num_classes=1000, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
head_drop_rate=0., |
|
norm_layer=nn.LayerNorm, |
|
layer_norm_eps=1e-12, |
|
init_values=0., |
|
use_learnable_pos_emb=False, |
|
init_scale=0., |
|
num_frames=16, |
|
tubelet_size=2, |
|
use_mean_pooling=True, |
|
with_cp=False, |
|
cos_attn=False): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
|
|
self.num_features = self.embed_dim = embed_dim |
|
self.tubelet_size = tubelet_size |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
num_frames=num_frames, |
|
tubelet_size=tubelet_size) |
|
num_patches = self.patch_embed.num_patches |
|
self.with_cp = with_cp |
|
|
|
norm_layer = partial(eval(norm_layer), eps=layer_norm_eps) |
|
|
|
if use_learnable_pos_emb: |
|
self.pos_embed = nn.Parameter( |
|
torch.zeros(1, num_patches, embed_dim)) |
|
else: |
|
|
|
self.pos_embed = get_sinusoid_encoding_table( |
|
num_patches, embed_dim) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth) |
|
] |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
init_values=init_values, |
|
cos_attn=cos_attn) for i in range(depth) |
|
]) |
|
self.norm = nn.Identity() if use_mean_pooling else norm_layer( |
|
embed_dim) |
|
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None |
|
self.head_dropout = nn.Dropout(head_drop_rate) |
|
self.head = nn.Linear( |
|
embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
if use_learnable_pos_emb: |
|
trunc_normal_(self.pos_embed, std=.02) |
|
|
|
self.apply(self._init_weights) |
|
if num_classes > 0: |
|
self.head.weight.data.mul_(init_scale) |
|
self.head.bias.data.mul_(init_scale) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def get_num_layers(self): |
|
return len(self.blocks) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear( |
|
self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x): |
|
B = x.size(0) |
|
|
|
x = self.patch_embed(x) |
|
|
|
if self.pos_embed is not None: |
|
x = x + self.pos_embed.expand(B, -1, -1).type_as(x).to( |
|
x.device).clone().detach() |
|
x = self.pos_drop(x) |
|
|
|
for blk in self.blocks: |
|
if self.with_cp: |
|
x = cp.checkpoint(blk, x) |
|
else: |
|
x = blk(x) |
|
|
|
if self.fc_norm is not None: |
|
return self.fc_norm(x.mean(1)) |
|
else: |
|
return self.norm(x[:, 0]) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head_dropout(x) |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
|
|
|
|
class VideoMAEv2(PreTrainedModel): |
|
config_class = VideoMAEv2Config |
|
def __init__(self, config=None): |
|
super().__init__(config=config) |
|
self.model_config = config.model_config |
|
logger.info("Model config: {}".format(self.model_config)) |
|
self.model = VisionTransformer(**self.model_config) |
|
|
|
def forward(self, pixel_values): |
|
return self.model(pixel_values) |
|
|
|
def extract_features(self, pixel_values): |
|
return self.model.forward_features(pixel_values) |
|
def vit_small_patch16_224(pretrained=False, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=16, |
|
embed_dim=384, |
|
depth=12, |
|
num_heads=6, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|
|
|
|
|
|
def vit_base_patch16_224(pretrained=False, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=16, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|
|
|
|
|
|
def vit_huge_patch16_224(pretrained=False, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=16, |
|
embed_dim=1280, |
|
depth=32, |
|
num_heads=16, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|
|
|
|
|
|
def vit_giant_patch14_224(pretrained=False, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=14, |
|
embed_dim=1408, |
|
depth=40, |
|
num_heads=16, |
|
mlp_ratio=48 / 11, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|