Orcawise's picture
Update README.md
c7462fd verified
|
raw
history blame
3.78 kB
metadata
base_model: google/flan-t5-base
library_name: peft
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: results
    results: []
pipeline_tag: text2text-generation

results

This model is a fine-tuned version of google/flan-t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 6
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 23
  • training_steps: 2373

Training results

Training Loss Epoch Step Validation Loss
3.0035 0.42 50 2.5115
2.7023 0.84 100 2.3978
2.6198 1.26 150 2.3258
2.5523 1.68 200 2.2768
2.4817 2.1 250 2.2360
2.4591 2.52 300 2.2041
2.4 2.94 350 2.1844
2.3709 3.36 400 2.1547
2.3591 3.78 450 2.1366
2.3232 4.2 500 2.1210
2.3016 4.62 550 2.1119
2.3041 5.04 600 2.0993
2.2646 5.46 650 2.0908
2.247 5.88 700 2.0794
2.1935 6.3 750 2.0612
2.2334 6.72 800 2.0573
2.2054 7.14 850 2.0498
2.212 7.56 900 2.0460
2.1687 7.98 950 2.0388
2.1454 8.4 1000 2.0347
2.1344 8.82 1050 2.0243
2.1522 9.24 1100 2.0155
2.1051 9.66 1150 2.0144
2.1435 10.08 1200 2.0152
2.1251 10.5 1250 2.0133
2.0664 10.92 1300 2.0000
2.0656 11.34 1350 2.0002
2.1186 11.76 1400 1.9933
2.0719 12.18 1450 1.9906
2.0389 12.61 1500 1.9913
2.0655 13.03 1550 1.9874
2.0371 13.45 1600 1.9824
2.0581 13.87 1650 1.9789
2.0068 14.29 1700 1.9801
2.0536 14.71 1750 1.9750
2.0311 15.13 1800 1.9729
2.0292 15.55 1850 1.9716
1.9955 15.97 1900 1.9714
2.0056 16.39 1950 1.9671
2.0391 16.81 2000 1.9642
2.0059 17.23 2050 1.9687
2.0155 17.65 2100 1.9644
1.9745 18.07 2150 1.9617
1.9929 18.49 2200 1.9621
1.9978 18.91 2250 1.9639
2.023 19.33 2300 1.9617
1.992 19.75 2350 1.9615

Framework versions

  • PEFT 0.8.2
  • Transformers 4.38.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2