Edit model card

swin-base-patch4-window7-224-in22k-food101-24-12

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2524
  • Accuracy: 0.9312

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8657 1.0 789 0.4698 0.8663
0.7506 2.0 1578 0.3419 0.9006
0.6379 3.0 2367 0.3061 0.9116
0.5223 4.0 3157 0.2906 0.9149
0.4989 5.0 3946 0.2783 0.9205
0.4163 6.0 4735 0.2732 0.9225
0.3954 7.0 5524 0.2675 0.9255
0.3466 8.0 6314 0.2710 0.9240
0.3666 9.0 7103 0.2625 0.9275
0.2085 10.0 7892 0.2578 0.9295
0.263 11.0 8681 0.2563 0.9302
0.2171 12.0 9468 0.2524 0.9312

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
10
Safetensors
Model size
86.9M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PedroSampaio/swin-base-patch4-window7-224-in22k-food101-24-12

Finetuned
(22)
this model

Dataset used to train PedroSampaio/swin-base-patch4-window7-224-in22k-food101-24-12

Evaluation results