⭐My custom LLM 13B⭐

Model Details

Model Developers

  • Kyujin Han (kyujinpy)

Model Architecture

  • My custom LLM 13B is an auto-regressive language model based on the LLaMA2 transformer architecture.

Base Model

Training Dataset


Model comparisons

Ko-LLM leaderboard(11/27; link)

Model Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
⭐My custom LLM 13B-v1⭐ 50.19 45.99 56.93 41.78 41.66 64.58
⭐My custom LLM 13B-v2⭐ 48.28 45.73 56.97 38.77 38.75 61.16
⭐My custom LLM 13B-v4⭐ 49.89 45.05 57.06 41.83 42.93 62.57

Model comparisons2

AI-Harness evaluation; link

Model Copa Copa HellaSwag HellaSwag BoolQ BoolQ Sentineg Sentineg
0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot
⭐My custom LLM 13B-v1⭐ 0.7987 0.8269 0.4994 0.5660 0.3343 0.5060 0.6984 0.9723
⭐My custom LLM 13B-v2⭐ 0.7938 0.8209 0.4978 0.4893 0.3343 0.5614 0.6283 0.9773
⭐My custom LLM 13B-v4⭐ 0.7988 0.8279 0.4995 0.4953 0.3343 0.3558 0.7825 0.9698
beomi/llama-2-koen-13b 0.7768 0.8128 0.4999 0.5127 0.3988 0.7038 0.5870 0.9748

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "PracticeLLM/Custom-KoLLM-13B-v4"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Hyperparameters

  • learning_rate: 4e-4
  • batch_size: 16
  • epoch: 1
  • lora_target_modules: [gate_proj, down_proj, up_proj, q_proj, k_proj, v_proj, o_proj]
  • cutoff_len: 4096
Downloads last month
4,810
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train PracticeLLM/Custom-KoLLM-13B-v4