|
--- |
|
license: apache-2.0 |
|
base_model: google-t5/t5-small |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: t5-small-samsum |
|
results: [] |
|
datasets: |
|
- samsum |
|
pipeline_tag: summarization |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-samsum |
|
|
|
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6507 |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 64 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| No log | 1.0 | 460 | 1.9598 | |
|
| 2.4944 | 2.0 | 921 | 1.8661 | |
|
| 2.0902 | 3.0 | 1381 | 1.8210 | |
|
| 2.0173 | 4.0 | 1842 | 1.8009 | |
|
| 1.9623 | 5.0 | 2302 | 1.7787 | |
|
| 1.9331 | 6.0 | 2763 | 1.7637 | |
|
| 1.903 | 7.0 | 3223 | 1.7514 | |
|
| 1.881 | 8.0 | 3684 | 1.7390 | |
|
| 1.8648 | 9.0 | 4144 | 1.7350 | |
|
| 1.8463 | 10.0 | 4605 | 1.7242 | |
|
| 1.8302 | 11.0 | 5065 | 1.7189 | |
|
| 1.8119 | 12.0 | 5526 | 1.7098 | |
|
| 1.8119 | 13.0 | 5986 | 1.7076 | |
|
| 1.8007 | 14.0 | 6447 | 1.7057 | |
|
| 1.7903 | 15.0 | 6907 | 1.6984 | |
|
| 1.778 | 16.0 | 7368 | 1.6944 | |
|
| 1.7639 | 17.0 | 7828 | 1.6907 | |
|
| 1.7596 | 18.0 | 8289 | 1.6896 | |
|
| 1.746 | 19.0 | 8749 | 1.6861 | |
|
| 1.7342 | 20.0 | 9210 | 1.6860 | |
|
| 1.732 | 21.0 | 9670 | 1.6808 | |
|
| 1.719 | 22.0 | 10131 | 1.6760 | |
|
| 1.7152 | 23.0 | 10591 | 1.6778 | |
|
| 1.7082 | 24.0 | 11052 | 1.6762 | |
|
| 1.7003 | 25.0 | 11512 | 1.6707 | |
|
| 1.7003 | 26.0 | 11973 | 1.6722 | |
|
| 1.6952 | 27.0 | 12433 | 1.6701 | |
|
| 1.6848 | 28.0 | 12894 | 1.6671 | |
|
| 1.6814 | 29.0 | 13354 | 1.6668 | |
|
| 1.6743 | 30.0 | 13815 | 1.6637 | |
|
| 1.6742 | 31.0 | 14275 | 1.6640 | |
|
| 1.6652 | 32.0 | 14736 | 1.6624 | |
|
| 1.6582 | 33.0 | 15196 | 1.6606 | |
|
| 1.6575 | 34.0 | 15657 | 1.6605 | |
|
| 1.6499 | 35.0 | 16117 | 1.6617 | |
|
| 1.6455 | 36.0 | 16578 | 1.6601 | |
|
| 1.6506 | 37.0 | 17038 | 1.6594 | |
|
| 1.6506 | 38.0 | 17499 | 1.6556 | |
|
| 1.637 | 39.0 | 17959 | 1.6570 | |
|
| 1.6374 | 40.0 | 18420 | 1.6558 | |
|
| 1.6303 | 41.0 | 18880 | 1.6557 | |
|
| 1.6311 | 42.0 | 19341 | 1.6553 | |
|
| 1.6234 | 43.0 | 19801 | 1.6570 | |
|
| 1.619 | 44.0 | 20262 | 1.6537 | |
|
| 1.6214 | 45.0 | 20722 | 1.6529 | |
|
| 1.6183 | 46.0 | 21183 | 1.6542 | |
|
| 1.609 | 47.0 | 21643 | 1.6543 | |
|
| 1.6159 | 48.0 | 22104 | 1.6530 | |
|
| 1.6101 | 49.0 | 22564 | 1.6524 | |
|
| 1.6083 | 50.0 | 23025 | 1.6515 | |
|
| 1.6083 | 51.0 | 23485 | 1.6528 | |
|
| 1.605 | 52.0 | 23946 | 1.6526 | |
|
| 1.6011 | 53.0 | 24406 | 1.6515 | |
|
| 1.6028 | 54.0 | 24867 | 1.6517 | |
|
| 1.6015 | 55.0 | 25327 | 1.6512 | |
|
| 1.601 | 56.0 | 25788 | 1.6504 | |
|
| 1.6007 | 57.0 | 26248 | 1.6513 | |
|
| 1.5948 | 58.0 | 26709 | 1.6511 | |
|
| 1.5973 | 59.0 | 27169 | 1.6515 | |
|
| 1.5929 | 60.0 | 27630 | 1.6514 | |
|
| 1.5955 | 61.0 | 28090 | 1.6507 | |
|
| 1.5931 | 62.0 | 28551 | 1.6507 | |
|
| 1.5939 | 63.0 | 29011 | 1.6507 | |
|
| 1.5939 | 63.93 | 29440 | 1.6507 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.1 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |