|
--- |
|
language: |
|
- en |
|
license: cc-by-nc-4.0 |
|
tags: |
|
- Math |
|
- merge |
|
datasets: |
|
- meta-math/MetaMathQA |
|
pipeline_tag: text-generation |
|
base_model: |
|
- Q-bert/MetaMath-Cybertron |
|
- berkeley-nest/Starling-LM-7B-alpha |
|
model-index: |
|
- name: MetaMath-Cybertron-Starling |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 67.75 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Q-bert/MetaMath-Cybertron-Starling |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 86.23 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Q-bert/MetaMath-Cybertron-Starling |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 65.24 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Q-bert/MetaMath-Cybertron-Starling |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 55.94 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Q-bert/MetaMath-Cybertron-Starling |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 81.45 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Q-bert/MetaMath-Cybertron-Starling |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 71.49 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Q-bert/MetaMath-Cybertron-Starling |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
## MetaMath-Cybertron-Starling |
|
|
|
|
|
Merge [Q-bert/MetaMath-Cybertron](https://huggingface.co/Q-bert/MetaMath-Cybertron) and [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) using slerp merge. |
|
|
|
You can use ChatML format. |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [Here](https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/Q-bert/MetaMath-Cybertron-Starling/results_2023-12-07T21-59-56.458563.json) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 71.35 | |
|
| ARC (25-shot) | 67.75 | |
|
| HellaSwag (10-shot) | 86.23 | |
|
| MMLU (5-shot) | 65.24 | |
|
| TruthfulQA (0-shot) | 55.94 | |
|
| Winogrande (5-shot) | 81.45 | |
|
| GSM8K (5-shot) | 71.49 | |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Q-bert__MetaMath-Cybertron-Starling) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |71.35| |
|
|AI2 Reasoning Challenge (25-Shot)|67.75| |
|
|HellaSwag (10-Shot) |86.23| |
|
|MMLU (5-Shot) |65.24| |
|
|TruthfulQA (0-shot) |55.94| |
|
|Winogrande (5-shot) |81.45| |
|
|GSM8k (5-shot) |71.49| |
|
|
|
|