metadata
base_model: EpistemeAI/Athena-codegemma-2-9b
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- gemma2
- trl
pipeline_tag: text-generation
QuantFactory/Athena-codegemma-2-9b-v1-GGUF
This is quantized version of EpistemeAI/Athena-codegemma-2-9b-v1 created using llama.cpp
Original Model Card
How to use
This repository contains Athena-codegemma-2-9b-v1, for use with transformers and with the original llama codebase.
Use with transformers Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function.
Make sure to update your transformers installation via pip install --upgrade transformers.
Best use to test or prompt:
You need to prepare prompt in alpaca format to generate properly:
def format_test(x):
if x['input']:
formatted_text = f"""Below is an instruction that describes a task. \
Write a response that appropriately completes the request.
### Instruction:
{x['instruction']}
### Input:
{x['input']}
### Response:
"""
else:
formatted_text = f"""Below is an instruction that describes a task. \
Write a response that appropriately completes the request.
### Instruction:
{x['instruction']}
### Response:
"""
return formatted_text
# using code_instructions_122k_alpaca dataset
Prompt = format_test(data[155])
print(Prompt)
- huggingface transformers method:
from transformers import TextStreamer
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
Prompt
], return_tensors = "pt").to("cuda")
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 512)
- unsloth method
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "EpistemeAI/Athena-codegemma-2-9b-v1", # YOUR MODEL YOU USED FOR TRAINING
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
# alpaca_prompt = You MUST copy from above!
inputs = tokenizer(
[
alpaca_prompt.format(
"Create a function to calculate the sum of a sequence of integers.", # instruction
"", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
--
Inputs and outputs
- Input: Text string, such as a question, a prompt, or a document to be summarized.
- Output: Generated English-language text in response to the input, such as an answer to a question, or a summary of a document.
Citation
@article{gemma_2024,
title={Gemma},
url={https://www.kaggle.com/m/3301},
DOI={10.34740/KAGGLE/M/3301},
publisher={Kaggle},
author={Gemma Team},
year={2024}
}
Uploaded model
- Developed by: EpistemeAI
- License: apache-2.0
- Finetuned from model : EpistemeAI/Athena-codegemma-2-9b
This gemma2 model was trained 2x faster with Unsloth and Huggingface's TRL library.