AlphaMonarch-laser
AlphaMonarch-laser is a DPO fine-tuned of mlabonne/NeuralMonarch-7B using the argilla/OpenHermes2.5-dpo-binarized-alpha preference dataset but achieves better performance then mlabonne/AlphaMonarch-7B using LaserQLoRA. I have fine-tuned this model only on half of the projections, but have achieved better results as compared to the version released by Maximme Labonne. I have trained this model for 1080 steps.
AlphaMonarch-laser is ranking 1 on YALL - Yet Another LLM Leaderboard.
π Evaluation results
Nous Benchmark
AGIEVAL
Task |
Version |
Metric |
Value |
StdErr |
agieval_aqua_rat |
0 |
acc |
28.35% |
2.83% |
agieval_aqua_rat |
0 |
acc_norm |
26.38% |
2.77% |
agieval_logiqa_en |
0 |
acc |
38.25% |
1.91% |
agieval_logiqa_en |
0 |
acc_norm |
38.10% |
1.90% |
agieval_lsat_ar |
0 |
acc |
23.91% |
2.82% |
agieval_lsat_ar |
0 |
acc_norm |
23.48% |
2.80% |
agieval_lsat_lr |
0 |
acc |
52.75% |
2.21% |
agieval_lsat_lr |
0 |
acc_norm |
53.92% |
2.21% |
agieval_lsat_rc |
0 |
acc |
66.91% |
2.87% |
agieval_lsat_rc |
0 |
acc_norm |
67.29% |
2.87% |
agieval_sat_en |
0 |
acc |
78.64% |
2.86% |
agieval_sat_en |
0 |
acc_norm |
78.64% |
2.86% |
agieval_sat_en_without_passage |
0 |
acc |
45.15% |
3.48% |
agieval_sat_en_without_passage |
0 |
acc_norm |
44.17% |
3.47% |
agieval_sat_math |
0 |
acc |
33.18% |
3.18% |
agieval_sat_math |
0 |
acc_norm |
31.36% |
3.14% |
Average: 28.41% |
|
|
|
|
GPT4ALL
Task |
Version |
Metric |
Value |
StdErr |
arc_challenge |
0 |
acc |
66.30% |
Β± 1.38% |
|
|
acc_norm |
68.26% |
Β± 1.36% |
arc_easy |
0 |
acc |
86.57% |
Β± 0.70% |
|
|
acc_norm |
80.81% |
Β± 0.81% |
boolq |
1 |
acc |
87.16% |
Β± 0.59% |
hellaswag |
0 |
acc |
69.60% |
Β± 0.46% |
|
|
acc_norm |
87.45% |
Β± 0.33% |
openbookqa |
0 |
acc |
39.20% |
Β± 2.19% |
|
|
acc_norm |
49.60% |
Β± 2.24% |
piqa |
0 |
acc |
83.03% |
Β± 0.88% |
|
|
acc_norm |
84.87% |
Β± 0.84% |
winogrande |
0 |
acc |
81.06% |
Β± 1.10% |
Average: 76.98% |
|
|
|
|
TRUTHFUL-QA
Task |
Version |
Metric |
Value |
StdErr |
truthfulqa_mc |
1 |
mc1 |
63.04% |
Β± 1.69% |
truthfulqa_mc |
1 |
mc2 |
78.39% |
Β± 1.37% |
Average: 70.71% |
|
|
|
|
BIGBENCH
Task |
Version |
Metric |
Value |
StdErr |
bigbench_causal_judgement |
0 |
multiple_choice_grade |
60.00% |
Β± 3.56% |
bigbench_date_understanding |
0 |
multiple_choice_grade |
62.06% |
Β± 2.53% |
bigbench_disambiguation_qa |
0 |
multiple_choice_grade |
54.26% |
Β± 3.11% |
bigbench_geometric_shapes |
0 |
multiple_choice_grade |
23.96% |
Β± 2.26% |
|
|
exact_str_match |
0.00% |
Β± 0.00% |
bigbench_logical_deduction_five_objects |
0 |
multiple_choice_grade |
32.80% |
Β± 2.10% |
bigbench_logical_deduction_seven_objects |
0 |
multiple_choice_grade |
23.86% |
Β± 1.61% |
bigbench_logical_deduction_three_objects |
0 |
multiple_choice_grade |
59.33% |
Β± 2.84% |
bigbench_movie_recommendation |
0 |
multiple_choice_grade |
58.00% |
Β± 2.21% |
bigbench_navigate |
0 |
multiple_choice_grade |
56.00% |
Β± 1.57% |
bigbench_reasoning_about_colored_objects |
0 |
multiple_choice_grade |
69.20% |
Β± 1.03% |
bigbench_ruin_names |
0 |
multiple_choice_grade |
55.36% |
Β± 2.35% |
bigbench_salient_translation_error_detection |
0 |
multiple_choice_grade |
41.48% |
Β± 1.56% |
bigbench_snarks |
0 |
multiple_choice_grade |
73.48% |
Β± 3.29% |
bigbench_sports_understanding |
0 |
multiple_choice_grade |
76.06% |
Β± 1.36% |
bigbench_temporal_sequences |
0 |
multiple_choice_grade |
55.50% |
Β± 1.57% |
bigbench_tracking_shuffled_objects_five_objects |
0 |
multiple_choice_grade |
23.28% |
Β± 1.20% |
bigbench_tracking_shuffled_objects_seven_objects |
0 |
multiple_choice_grade |
19.37% |
Β± 0.94% |
bigbench_tracking_shuffled_objects_three_objects |
0 |
multiple_choice_grade |
59.33% |
Β± 2.84% |
Average: 55.37% |
|
|
|
|
Openllm Benchmark
Task |
Version |
Metric |
Value |
|
Stderr |
arc_challenge |
0 |
acc |
70.12 |
Β± |
1.30 |
|
|
acc_norm |
73.27 |
Β± |
1.29 |
hellaswag |
0 |
acc |
71.80 |
Β± |
0.44 |
|
|
acc_norm |
89.20 |
Β± |
0.30 |
gsm8k |
0 |
acc |
66.77 |
Β± |
1.2 |
winogrande |
0 |
acc |
84.6 |
Β± |
1.0 |
Average: 73.5%
TruthfulQA
Task |
Version |
Metric |
Value |
|
Stderr |
truthfulqa_mc |
1 |
mc1 |
62.79 |
Β± |
1.69 |
|
|
mc2 |
77.90 |
Β± |
1.37 |
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1080
π Axolotl Configuration
base_model: mlabonne/NeuralMonarch-7B
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
rl: dpo
chat_template: chatml
datasets:
- path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
split: train
type: chatml.intel
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out
adapter: qlora
lora_model_dir:
sequence_len: 1800
sample_packing: false
pad_to_sequence_len: false
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- layers.1.self_attn.q_proj
- layers.0.self_attn.q_proj
- layers.15.self_attn.q_proj
- layers.12.self_attn.q_proj
- layers.11.self_attn.q_proj
- layers.14.self_attn.q_proj
- layers.9.self_attn.q_proj
- layers.16.self_attn.q_proj
- layers.30.self_attn.q_proj
- layers.18.self_attn.q_proj
- layers.13.self_attn.q_proj
- layers.10.self_attn.q_proj
- layers.7.self_attn.q_proj
- layers.8.self_attn.q_proj
- layers.4.self_attn.q_proj
- layers.19.self_attn.q_proj
- layers.27.self_attn.k_proj
- layers.24.self_attn.k_proj
- layers.25.self_attn.k_proj
- layers.22.self_attn.k_proj
- layers.26.self_attn.k_proj
- layers.29.self_attn.k_proj
- layers.23.self_attn.k_proj
- layers.28.self_attn.k_proj
- layers.21.self_attn.k_proj
- layers.31.self_attn.k_proj
- layers.30.self_attn.k_proj
- layers.20.self_attn.k_proj
- layers.5.self_attn.k_proj
- layers.19.self_attn.k_proj
- layers.17.self_attn.k_proj
- layers.18.self_attn.k_proj
- layers.19.self_attn.v_proj
- layers.24.self_attn.v_proj
- layers.18.self_attn.v_proj
- layers.5.self_attn.v_proj
- layers.3.self_attn.v_proj
- layers.16.self_attn.v_proj
- layers.23.self_attn.v_proj
- layers.27.self_attn.v_proj
- layers.25.self_attn.v_proj
- layers.26.self_attn.v_proj
- layers.20.self_attn.v_proj
- layers.6.self_attn.v_proj
- layers.15.self_attn.v_proj
- layers.17.self_attn.v_proj
- layers.29.self_attn.v_proj
- layers.22.self_attn.v_proj
- layers.12.self_attn.o_proj
- layers.9.self_attn.o_proj
- layers.14.self_attn.o_proj
- layers.0.self_attn.o_proj
- layers.6.self_attn.o_proj
- layers.8.self_attn.o_proj
- layers.10.self_attn.o_proj
- layers.11.self_attn.o_proj
- layers.13.self_attn.o_proj
- layers.24.self_attn.o_proj
- layers.7.self_attn.o_proj
- layers.15.self_attn.o_proj
- layers.5.self_attn.o_proj
- layers.17.self_attn.o_proj
- layers.25.self_attn.o_proj
- layers.4.self_attn.o_proj
- layers.31.mlp.gate_proj
- layers.30.mlp.gate_proj
- layers.4.mlp.gate_proj
- layers.3.mlp.gate_proj
- layers.29.mlp.gate_proj
- layers.28.mlp.gate_proj
- layers.6.mlp.gate_proj
- layers.27.mlp.gate_proj
- layers.5.mlp.gate_proj
- layers.26.mlp.gate_proj
- layers.25.mlp.gate_proj
- layers.7.mlp.gate_proj
- layers.2.mlp.gate_proj
- layers.24.mlp.gate_proj
- layers.23.mlp.gate_proj
- layers.10.mlp.gate_proj
- layers.6.mlp.up_proj
- layers.4.mlp.up_proj
- layers.5.mlp.up_proj
- layers.27.mlp.up_proj
- layers.25.mlp.up_proj
- layers.26.mlp.up_proj
- layers.17.mlp.up_proj
- layers.24.mlp.up_proj
- layers.7.mlp.up_proj
- layers.10.mlp.up_proj
- layers.3.mlp.up_proj
- layers.11.mlp.up_proj
- layers.23.mlp.up_proj
- layers.9.mlp.up_proj
- layers.14.mlp.up_proj
- layers.18.mlp.up_proj
- layers.19.mlp.down_proj
- layers.20.mlp.down_proj
- layers.18.mlp.down_proj
- layers.21.mlp.down_proj
- layers.29.mlp.down_proj
- layers.1.mlp.down_proj
- layers.22.mlp.down_proj
- layers.28.mlp.down_proj
- layers.23.mlp.down_proj
- layers.30.mlp.down_proj
- layers.17.mlp.down_proj
- layers.4.mlp.down_proj
- layers.2.mlp.down_proj
- layers.15.mlp.down_proj
- layers.5.mlp.down_proj
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 5e-7
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 1
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 1080
max_steps: 1080
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0
- axolotl: 0.4.0