Edit model card

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7279
  • Answer: {'precision': 0.706858407079646, 'recall': 0.7898640296662547, 'f1': 0.7460595446584939, 'number': 809}
  • Header: {'precision': 0.312, 'recall': 0.3277310924369748, 'f1': 0.31967213114754095, 'number': 119}
  • Question: {'precision': 0.7741935483870968, 'recall': 0.8338028169014085, 'f1': 0.8028933092224232, 'number': 1065}
  • Overall Precision: 0.7197
  • Overall Recall: 0.7858
  • Overall F1: 0.7513
  • Overall Accuracy: 0.8034

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7555 1.0 10 1.5320 {'precision': 0.02317596566523605, 'recall': 0.03337453646477132, 'f1': 0.02735562310030395, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.11706783369803063, 'recall': 0.10046948356807511, 'f1': 0.10813542193026779, 'number': 1065} 0.0645 0.0672 0.0658 0.3975
1.3972 2.0 20 1.1941 {'precision': 0.2606060606060606, 'recall': 0.2657601977750309, 'f1': 0.2631578947368421, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4398805078416729, 'recall': 0.5530516431924882, 'f1': 0.49001663893510816, 'number': 1065} 0.3715 0.4034 0.3868 0.6107
1.0502 3.0 30 0.9315 {'precision': 0.5343347639484979, 'recall': 0.61557478368356, 'f1': 0.5720850086157381, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5706304868316041, 'recall': 0.6713615023474179, 'f1': 0.6169111302847283, 'number': 1065} 0.5484 0.6086 0.5769 0.7259
0.8107 4.0 40 0.7975 {'precision': 0.6146288209606987, 'recall': 0.695920889987639, 'f1': 0.6527536231884058, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.6344605475040258, 'recall': 0.739906103286385, 'f1': 0.683138274815778, 'number': 1065} 0.6124 0.6779 0.6435 0.7593
0.6553 5.0 50 0.7487 {'precision': 0.6507760532150776, 'recall': 0.7255871446229913, 'f1': 0.6861484511981296, 'number': 809} {'precision': 0.12, 'recall': 0.07563025210084033, 'f1': 0.09278350515463916, 'number': 119} {'precision': 0.6690085870413739, 'recall': 0.8046948356807512, 'f1': 0.7306052855924979, 'number': 1065} 0.6435 0.7291 0.6836 0.7719
0.5642 6.0 60 0.7147 {'precision': 0.6557203389830508, 'recall': 0.765142150803461, 'f1': 0.7062179121505989, 'number': 809} {'precision': 0.20833333333333334, 'recall': 0.12605042016806722, 'f1': 0.15706806282722513, 'number': 119} {'precision': 0.7058333333333333, 'recall': 0.7953051643192488, 'f1': 0.7479028697571745, 'number': 1065} 0.6683 0.7431 0.7037 0.7847
0.4833 7.0 70 0.6895 {'precision': 0.6919691969196919, 'recall': 0.7775030902348579, 'f1': 0.7322467986030267, 'number': 809} {'precision': 0.25742574257425743, 'recall': 0.2184873949579832, 'f1': 0.23636363636363636, 'number': 119} {'precision': 0.7268041237113402, 'recall': 0.7943661971830986, 'f1': 0.7590847913862719, 'number': 1065} 0.6904 0.7531 0.7204 0.7920
0.4356 8.0 80 0.6896 {'precision': 0.6869109947643979, 'recall': 0.8108776266996292, 'f1': 0.7437641723356009, 'number': 809} {'precision': 0.27884615384615385, 'recall': 0.24369747899159663, 'f1': 0.2600896860986547, 'number': 119} {'precision': 0.730185497470489, 'recall': 0.8131455399061033, 'f1': 0.7694358063083073, 'number': 1065} 0.6909 0.7782 0.7319 0.7919
0.3874 9.0 90 0.7000 {'precision': 0.7158836689038032, 'recall': 0.7911001236093943, 'f1': 0.7516147974163241, 'number': 809} {'precision': 0.2818181818181818, 'recall': 0.2605042016806723, 'f1': 0.27074235807860264, 'number': 119} {'precision': 0.7395388556789069, 'recall': 0.8131455399061033, 'f1': 0.7745974955277279, 'number': 1065} 0.7067 0.7712 0.7375 0.7957
0.3771 10.0 100 0.7200 {'precision': 0.7097142857142857, 'recall': 0.7676143386897404, 'f1': 0.7375296912114014, 'number': 809} {'precision': 0.272, 'recall': 0.2857142857142857, 'f1': 0.27868852459016397, 'number': 119} {'precision': 0.7438715131022823, 'recall': 0.8262910798122066, 'f1': 0.7829181494661922, 'number': 1065} 0.7032 0.7702 0.7352 0.7886
0.3231 11.0 110 0.7101 {'precision': 0.7115177610333692, 'recall': 0.8170580964153276, 'f1': 0.760644418872267, 'number': 809} {'precision': 0.29133858267716534, 'recall': 0.31092436974789917, 'f1': 0.3008130081300813, 'number': 119} {'precision': 0.7672188317349607, 'recall': 0.8262910798122066, 'f1': 0.7956600361663653, 'number': 1065} 0.7163 0.7918 0.7521 0.8000
0.3026 12.0 120 0.7186 {'precision': 0.7138009049773756, 'recall': 0.7799752781211372, 'f1': 0.7454223272297696, 'number': 809} {'precision': 0.325, 'recall': 0.3277310924369748, 'f1': 0.3263598326359833, 'number': 119} {'precision': 0.7658833768494343, 'recall': 0.8262910798122066, 'f1': 0.7949412827461607, 'number': 1065} 0.7199 0.7777 0.7477 0.7984
0.2876 13.0 130 0.7213 {'precision': 0.7156862745098039, 'recall': 0.8121137206427689, 'f1': 0.7608569774174871, 'number': 809} {'precision': 0.325, 'recall': 0.3277310924369748, 'f1': 0.3263598326359833, 'number': 119} {'precision': 0.7737676056338029, 'recall': 0.8253521126760563, 'f1': 0.7987278509768287, 'number': 1065} 0.7245 0.7903 0.7559 0.8025
0.2709 14.0 140 0.7269 {'precision': 0.7147613762486127, 'recall': 0.796044499381953, 'f1': 0.7532163742690058, 'number': 809} {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119} {'precision': 0.7709059233449478, 'recall': 0.8309859154929577, 'f1': 0.7998192498870312, 'number': 1065} 0.7205 0.7863 0.7519 0.8033
0.2745 15.0 150 0.7279 {'precision': 0.706858407079646, 'recall': 0.7898640296662547, 'f1': 0.7460595446584939, 'number': 809} {'precision': 0.312, 'recall': 0.3277310924369748, 'f1': 0.31967213114754095, 'number': 119} {'precision': 0.7741935483870968, 'recall': 0.8338028169014085, 'f1': 0.8028933092224232, 'number': 1065} 0.7197 0.7858 0.7513 0.8034

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
113M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for R0sti/layoutlm-funsd

Finetuned
(134)
this model