Whisper Small - Mohammed Rakib
This model is a fine-tuned version of openai/whisper-small on the common-voice-11, the google-fleurs, the openslr53 and the crblp speech corpus datasets. It achieves the following results on the evaluation set:
- Loss: 0.0617
- Cer: 5.4436
- Wer: 9.6538
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 8000
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
---|---|---|---|---|---|
0.5361 | 0.13 | 1000 | 0.4043 | 22.6599 | 44.0521 |
0.2881 | 0.26 | 2000 | 0.2217 | 16.3939 | 32.4894 |
0.2265 | 0.38 | 3000 | 0.1728 | 13.0425 | 25.9637 |
0.1974 | 0.51 | 4000 | 0.1430 | 11.3260 | 22.3187 |
0.1591 | 0.64 | 5000 | 0.1255 | 10.0167 | 19.5115 |
0.1504 | 0.77 | 6000 | 0.1102 | 8.8333 | 17.1919 |
0.1259 | 0.89 | 7000 | 0.1003 | 8.1863 | 15.8576 |
0.1184 | 1.02 | 8000 | 0.0940 | 7.7868 | 14.9110 |
0.1099 | 1.15 | 9000 | 0.0885 | 7.3675 | 13.9444 |
0.1075 | 1.28 | 10000 | 0.0830 | 6.9648 | 13.2008 |
0.095 | 1.41 | 11000 | 0.0789 | 6.6969 | 12.6776 |
0.0943 | 1.53 | 12000 | 0.0766 | 6.3765 | 11.9896 |
0.0923 | 1.66 | 13000 | 0.0731 | 6.1784 | 11.7203 |
0.0824 | 1.79 | 14000 | 0.0699 | 5.9267 | 11.1632 |
0.0756 | 1.92 | 15000 | 0.0683 | 5.6305 | 10.6327 |
0.0634 | 2.04 | 16000 | 0.0671 | 5.6905 | 10.6947 |
0.0618 | 2.17 | 17000 | 0.0662 | 5.5107 | 10.2926 |
0.0679 | 2.3 | 18000 | 0.0643 | 5.4948 | 10.1792 |
0.0589 | 2.43 | 19000 | 0.0647 | 5.5201 | 10.1881 |
0.0623 | 2.56 | 20000 | 0.0633 | 5.2731 | 9.8449 |
0.0558 | 2.68 | 21000 | 0.0623 | 5.4211 | 10.0267 |
0.0564 | 2.81 | 22000 | 0.0617 | 5.4553 | 9.9893 |
0.0552 | 2.94 | 23000 | 0.0607 | 5.3860 | 9.7778 |
0.0403 | 3.07 | 24000 | 0.0621 | 5.7297 | 10.0382 |
0.0406 | 3.19 | 25000 | 0.0617 | 5.4436 | 9.6538 |
0.041 | 3.32 | 26000 | 0.0611 | 6.0867 | 10.3834 |
0.0388 | 3.45 | 27000 | 0.0614 | 6.1641 | 10.3890 |
0.0383 | 3.58 | 28000 | 0.0611 | 6.1460 | 10.3537 |
0.0401 | 3.71 | 29000 | 0.0603 | 6.9576 | 11.0697 |
0.0343 | 3.83 | 30000 | 0.0613 | 7.1918 | 11.2243 |
0.0357 | 3.96 | 31000 | 0.0603 | 7.3128 | 11.3313 |
0.0313 | 4.09 | 32000 | 0.0624 | 7.3871 | 11.3861 |
0.0281 | 4.22 | 33000 | 0.0626 | 7.8705 | 11.8248 |
0.0298 | 4.34 | 34000 | 0.0629 | 8.3360 | 12.2368 |
0.0282 | 4.47 | 35000 | 0.0627 | 8.7840 | 12.6270 |
Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.10.2.dev0
- Tokenizers 0.13.2
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Datasets used to train Rakib/whisper-small-bn-crblp
Space using Rakib/whisper-small-bn-crblp 1
Evaluation results
- WER on google/fleurstest set self-reported10.800
- CER on google/fleurstest set self-reported6.550
- WER on mozilla-foundation/common_voice_11_0test set self-reported8.940
- CER on mozilla-foundation/common_voice_11_0test set self-reported4.710