SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'九月辛未太祖曾孙舒国公从式进封安定郡王',
'九月初二太祖曾孙舒国公从式进封安定郡王',
'杨难当在汉中大肆烧杀抢劫然后率众离开了汉中向西返回仇池留下赵温据守梁州又派他的魏兴太守薛健屯驻黄金山',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 756,057 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 20.76 tokens
- max: 199 tokens
- min: 4 tokens
- mean: 31.27 tokens
- max: 384 tokens
- Samples:
anchor positive 虏怀兼弱之威挟广地之计强兵大众亲自凌殄旍鼓弥年矢石不息
魏人怀有兼并弱小的威严胸藏拓展土地的计谋强人的军队亲自出征侵逼消灭旌旗战鼓连年出动战事不停息
孟子曰 以善服人者未有能服人者也以善养人然后能服天下
孟子说 用自己的善良使人们服从的人没有能使人服从的用善良影响教导人们才能使天下的人们都信服
开庆初大元兵渡江理宗议迁都平江庆元后谏不可恐摇动民心乃止
开庆初年大元朝部队渡过长江理宗打算迁都到平江庆元皇后劝谏不可迁都深恐动摇民心理宗才作罢
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 84,007 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 20.23 tokens
- max: 138 tokens
- min: 4 tokens
- mean: 31.42 tokens
- max: 384 tokens
- Samples:
anchor positive 雒阳户五万二千八百三十九
雒阳有五万二千八百三十九户
拜南青州刺史在任有政绩
任南青州刺史很有政绩
第六品以下加不得服金钅奠绫锦锦绣七缘绮貂豽裘金叉环铒及以金校饰器物张绛帐
官位在第六品以下的官员再增加不得穿用金钿绫锦锦绣七缘绮貂钠皮衣金叉缳饵以及用金装饰的器物张绛帐等衣服物品
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0021 | 100 | 0.6475 | - |
0.0042 | 200 | 0.5193 | - |
0.0063 | 300 | 0.4132 | - |
0.0085 | 400 | 0.3981 | - |
0.0106 | 500 | 0.4032 | - |
0.0127 | 600 | 0.3627 | - |
0.0148 | 700 | 0.3821 | - |
0.0169 | 800 | 0.3767 | - |
0.0190 | 900 | 0.3731 | - |
0.0212 | 1000 | 0.3744 | - |
0.0233 | 1100 | 0.3115 | - |
0.0254 | 1200 | 0.3998 | - |
0.0275 | 1300 | 0.3103 | - |
0.0296 | 1400 | 0.3251 | - |
0.0317 | 1500 | 0.2833 | - |
0.0339 | 1600 | 0.3335 | - |
0.0360 | 1700 | 0.3281 | - |
0.0381 | 1800 | 0.423 | - |
0.0402 | 1900 | 0.3687 | - |
0.0423 | 2000 | 0.3452 | - |
0.0444 | 2100 | 0.8643 | - |
0.0466 | 2200 | 0.4279 | - |
0.0487 | 2300 | 0.4188 | - |
0.0508 | 2400 | 0.3676 | - |
0.0529 | 2500 | 0.3279 | - |
0.0550 | 2600 | 0.3415 | - |
0.0571 | 2700 | 1.5834 | - |
0.0593 | 2800 | 2.7778 | - |
0.0614 | 2900 | 2.7734 | - |
0.0635 | 3000 | 2.7732 | - |
0.0656 | 3100 | 2.7751 | - |
0.0677 | 3200 | 2.7731 | - |
0.0698 | 3300 | 2.773 | - |
0.0720 | 3400 | 2.7727 | - |
0.0741 | 3500 | 2.7534 | - |
0.0762 | 3600 | 2.2219 | - |
0.0783 | 3700 | 0.5137 | - |
0.0804 | 3800 | 0.4143 | - |
0.0825 | 3900 | 0.4002 | - |
0.0846 | 4000 | 0.368 | - |
0.0868 | 4100 | 0.3879 | - |
0.0889 | 4200 | 0.3519 | - |
0.0910 | 4300 | 0.364 | - |
0.0931 | 4400 | 0.3618 | - |
0.0952 | 4500 | 0.3545 | - |
0.0973 | 4600 | 0.379 | - |
0.0995 | 4700 | 0.3837 | - |
0.1016 | 4800 | 0.3553 | - |
0.1037 | 4900 | 0.3519 | - |
0.1058 | 5000 | 0.3416 | 0.3487 |
0.1079 | 5100 | 0.3763 | - |
0.1100 | 5200 | 0.3748 | - |
0.1122 | 5300 | 0.3564 | - |
0.1143 | 5400 | 0.336 | - |
0.1164 | 5500 | 0.3601 | - |
0.1185 | 5600 | 0.3521 | - |
0.1206 | 5700 | 0.376 | - |
0.1227 | 5800 | 0.3011 | - |
0.1249 | 5900 | 0.345 | - |
0.1270 | 6000 | 0.3211 | - |
0.1291 | 6100 | 0.3673 | - |
0.1312 | 6200 | 0.3762 | - |
0.1333 | 6300 | 0.3562 | - |
0.1354 | 6400 | 0.2761 | - |
0.1376 | 6500 | 0.3186 | - |
0.1397 | 6600 | 0.3582 | - |
0.1418 | 6700 | 0.3454 | - |
0.1439 | 6800 | 0.3429 | - |
0.1460 | 6900 | 0.2932 | - |
0.1481 | 7000 | 0.3357 | - |
0.1503 | 7100 | 0.2979 | - |
0.1524 | 7200 | 0.313 | - |
0.1545 | 7300 | 0.3364 | - |
0.1566 | 7400 | 0.3459 | - |
0.1587 | 7500 | 0.279 | - |
0.1608 | 7600 | 0.3274 | - |
0.1629 | 7700 | 0.3367 | - |
0.1651 | 7800 | 0.2935 | - |
0.1672 | 7900 | 0.3415 | - |
0.1693 | 8000 | 0.2838 | - |
0.1714 | 8100 | 0.2667 | - |
0.1735 | 8200 | 0.3051 | - |
0.1756 | 8300 | 0.3197 | - |
0.1778 | 8400 | 0.3086 | - |
0.1799 | 8500 | 0.3186 | - |
0.1820 | 8600 | 0.3063 | - |
0.1841 | 8700 | 0.2967 | - |
0.1862 | 8800 | 0.3069 | - |
0.1883 | 8900 | 0.3391 | - |
0.1905 | 9000 | 0.335 | - |
0.1926 | 9100 | 0.3115 | - |
0.1947 | 9200 | 0.3214 | - |
0.1968 | 9300 | 0.278 | - |
0.1989 | 9400 | 0.2833 | - |
0.2010 | 9500 | 0.303 | - |
0.2032 | 9600 | 0.3238 | - |
0.2053 | 9700 | 0.2622 | - |
0.2074 | 9800 | 0.3295 | - |
0.2095 | 9900 | 0.2699 | - |
0.2116 | 10000 | 0.2426 | 0.2962 |
0.2137 | 10100 | 0.262 | - |
0.2159 | 10200 | 0.3199 | - |
0.2180 | 10300 | 0.3677 | - |
0.2201 | 10400 | 0.2423 | - |
0.2222 | 10500 | 0.3446 | - |
0.2243 | 10600 | 0.3002 | - |
0.2264 | 10700 | 0.2863 | - |
0.2286 | 10800 | 0.2692 | - |
0.2307 | 10900 | 0.3157 | - |
0.2328 | 11000 | 0.3172 | - |
0.2349 | 11100 | 0.3622 | - |
0.2370 | 11200 | 0.3019 | - |
0.2391 | 11300 | 0.2789 | - |
0.2412 | 11400 | 0.2872 | - |
0.2434 | 11500 | 0.2823 | - |
0.2455 | 11600 | 0.3017 | - |
0.2476 | 11700 | 0.2573 | - |
0.2497 | 11800 | 0.3104 | - |
0.2518 | 11900 | 0.2857 | - |
0.2539 | 12000 | 0.2898 | - |
0.2561 | 12100 | 0.2389 | - |
0.2582 | 12200 | 0.3137 | - |
0.2603 | 12300 | 0.3029 | - |
0.2624 | 12400 | 0.2894 | - |
0.2645 | 12500 | 0.2665 | - |
0.2666 | 12600 | 0.2705 | - |
0.2688 | 12700 | 0.2673 | - |
0.2709 | 12800 | 0.248 | - |
0.2730 | 12900 | 0.2417 | - |
0.2751 | 13000 | 0.2852 | - |
0.2772 | 13100 | 0.2619 | - |
0.2793 | 13200 | 0.3157 | - |
0.2815 | 13300 | 0.2464 | - |
0.2836 | 13400 | 0.2837 | - |
0.2857 | 13500 | 0.3202 | - |
0.2878 | 13600 | 0.2618 | - |
0.2899 | 13700 | 0.2823 | - |
0.2920 | 13800 | 0.2634 | - |
0.2942 | 13900 | 0.2747 | - |
0.2963 | 14000 | 0.2835 | - |
0.2984 | 14100 | 0.2594 | - |
0.3005 | 14200 | 0.2744 | - |
0.3026 | 14300 | 0.2722 | - |
0.3047 | 14400 | 0.2514 | - |
0.3069 | 14500 | 0.2809 | - |
0.3090 | 14600 | 0.2949 | - |
0.3111 | 14700 | 0.2687 | - |
0.3132 | 14800 | 0.3 | - |
0.3153 | 14900 | 0.2684 | - |
0.3174 | 15000 | 0.2894 | 0.2790 |
0.3195 | 15100 | 0.2676 | - |
0.3217 | 15200 | 0.2519 | - |
0.3238 | 15300 | 0.2698 | - |
0.3259 | 15400 | 0.2898 | - |
0.3280 | 15500 | 0.2359 | - |
0.3301 | 15600 | 0.2866 | - |
0.3322 | 15700 | 0.3098 | - |
0.3344 | 15800 | 0.2809 | - |
0.3365 | 15900 | 0.3081 | - |
0.3386 | 16000 | 0.266 | - |
0.3407 | 16100 | 0.2523 | - |
0.3428 | 16200 | 0.3215 | - |
0.3449 | 16300 | 0.2883 | - |
0.3471 | 16400 | 0.2897 | - |
0.3492 | 16500 | 0.3174 | - |
0.3513 | 16600 | 0.2878 | - |
0.3534 | 16700 | 0.267 | - |
0.3555 | 16800 | 0.2452 | - |
0.3576 | 16900 | 0.2429 | - |
0.3598 | 17000 | 0.2178 | - |
0.3619 | 17100 | 0.2798 | - |
0.3640 | 17200 | 0.2367 | - |
0.3661 | 17300 | 0.2554 | - |
0.3682 | 17400 | 0.2883 | - |
0.3703 | 17500 | 0.2567 | - |
0.3725 | 17600 | 0.27 | - |
0.3746 | 17700 | 0.2837 | - |
0.3767 | 17800 | 0.2783 | - |
0.3788 | 17900 | 0.2517 | - |
0.3809 | 18000 | 0.2545 | - |
0.3830 | 18100 | 0.2632 | - |
0.3852 | 18200 | 0.2074 | - |
0.3873 | 18300 | 0.2276 | - |
0.3894 | 18400 | 0.3022 | - |
0.3915 | 18500 | 0.2381 | - |
0.3936 | 18600 | 0.2552 | - |
0.3957 | 18700 | 0.2579 | - |
0.3978 | 18800 | 0.2655 | - |
0.4000 | 18900 | 0.252 | - |
0.4021 | 19000 | 0.2876 | - |
0.4042 | 19100 | 0.2037 | - |
0.4063 | 19200 | 0.251 | - |
0.4084 | 19300 | 0.2588 | - |
0.4105 | 19400 | 0.201 | - |
0.4127 | 19500 | 0.2828 | - |
0.4148 | 19600 | 0.2637 | - |
0.4169 | 19700 | 0.3233 | - |
0.4190 | 19800 | 0.2475 | - |
0.4211 | 19900 | 0.2618 | - |
0.4232 | 20000 | 0.3272 | 0.2519 |
0.4254 | 20100 | 0.3074 | - |
0.4275 | 20200 | 0.2994 | - |
0.4296 | 20300 | 0.2624 | - |
0.4317 | 20400 | 0.2389 | - |
0.4338 | 20500 | 0.2809 | - |
0.4359 | 20600 | 0.2659 | - |
0.4381 | 20700 | 0.2508 | - |
0.4402 | 20800 | 0.2542 | - |
0.4423 | 20900 | 0.2525 | - |
0.4444 | 21000 | 0.257 | - |
0.4465 | 21100 | 0.2242 | - |
0.4486 | 21200 | 0.2307 | - |
0.4508 | 21300 | 0.2721 | - |
0.4529 | 21400 | 0.2489 | - |
0.4550 | 21500 | 0.2933 | - |
0.4571 | 21600 | 0.2448 | - |
0.4592 | 21700 | 0.2619 | - |
0.4613 | 21800 | 0.2488 | - |
0.4635 | 21900 | 0.2411 | - |
0.4656 | 22000 | 0.2964 | - |
0.4677 | 22100 | 0.2062 | - |
0.4698 | 22200 | 0.2665 | - |
0.4719 | 22300 | 0.263 | - |
0.4740 | 22400 | 0.2418 | - |
0.4762 | 22500 | 0.2879 | - |
0.4783 | 22600 | 0.2406 | - |
0.4804 | 22700 | 0.2448 | - |
0.4825 | 22800 | 0.243 | - |
0.4846 | 22900 | 0.2863 | - |
0.4867 | 23000 | 0.2833 | - |
0.4888 | 23100 | 0.2784 | - |
0.4910 | 23200 | 0.2789 | - |
0.4931 | 23300 | 0.2495 | - |
0.4952 | 23400 | 0.2872 | - |
0.4973 | 23500 | 0.2487 | - |
0.4994 | 23600 | 0.2669 | - |
0.5015 | 23700 | 0.2748 | - |
0.5037 | 23800 | 0.246 | - |
0.5058 | 23900 | 0.2512 | - |
0.5079 | 24000 | 0.222 | - |
0.5100 | 24100 | 0.2662 | - |
0.5121 | 24200 | 0.2238 | - |
0.5142 | 24300 | 0.2399 | - |
0.5164 | 24400 | 0.2595 | - |
0.5185 | 24500 | 0.3002 | - |
0.5206 | 24600 | 0.2553 | - |
0.5227 | 24700 | 0.226 | - |
0.5248 | 24800 | 0.2823 | - |
0.5269 | 24900 | 0.2737 | - |
0.5291 | 25000 | 0.2237 | 0.2492 |
0.5312 | 25100 | 0.2642 | - |
0.5333 | 25200 | 0.2486 | - |
0.5354 | 25300 | 0.2527 | - |
0.5375 | 25400 | 0.2363 | - |
0.5396 | 25500 | 0.2443 | - |
0.5418 | 25600 | 0.2485 | - |
0.5439 | 25700 | 0.2434 | - |
0.5460 | 25800 | 0.2631 | - |
0.5481 | 25900 | 0.284 | - |
0.5502 | 26000 | 0.217 | - |
0.5523 | 26100 | 0.2246 | - |
0.5545 | 26200 | 0.2614 | - |
0.5566 | 26300 | 0.2722 | - |
0.5587 | 26400 | 0.2114 | - |
0.5608 | 26500 | 0.2623 | - |
0.5629 | 26600 | 0.2475 | - |
0.5650 | 26700 | 0.2449 | - |
0.5671 | 26800 | 0.2423 | - |
0.5693 | 26900 | 0.2435 | - |
0.5714 | 27000 | 0.2446 | - |
0.5735 | 27100 | 0.2248 | - |
0.5756 | 27200 | 0.2159 | - |
0.5777 | 27300 | 0.2415 | - |
0.5798 | 27400 | 0.2257 | - |
0.5820 | 27500 | 0.2775 | - |
0.5841 | 27600 | 0.2533 | - |
0.5862 | 27700 | 0.2893 | - |
0.5883 | 27800 | 0.2095 | - |
0.5904 | 27900 | 0.2156 | - |
0.5925 | 28000 | 0.2315 | - |
0.5947 | 28100 | 0.2865 | - |
0.5968 | 28200 | 0.262 | - |
0.5989 | 28300 | 0.2506 | - |
0.6010 | 28400 | 0.2472 | - |
0.6031 | 28500 | 0.2395 | - |
0.6052 | 28600 | 0.2269 | - |
0.6074 | 28700 | 0.2639 | - |
0.6095 | 28800 | 0.2674 | - |
0.6116 | 28900 | 0.2521 | - |
0.6137 | 29000 | 0.2553 | - |
0.6158 | 29100 | 0.2526 | - |
0.6179 | 29200 | 0.231 | - |
0.6201 | 29300 | 0.2622 | - |
0.6222 | 29400 | 0.237 | - |
0.6243 | 29500 | 0.2475 | - |
0.6264 | 29600 | 0.2435 | - |
0.6285 | 29700 | 0.2109 | - |
0.6306 | 29800 | 0.2376 | - |
0.6328 | 29900 | 0.2202 | - |
0.6349 | 30000 | 0.2147 | 0.2370 |
0.6370 | 30100 | 0.2306 | - |
0.6391 | 30200 | 0.2249 | - |
0.6412 | 30300 | 0.3027 | - |
0.6433 | 30400 | 0.2115 | - |
0.6454 | 30500 | 0.2597 | - |
0.6476 | 30600 | 0.2483 | - |
0.6497 | 30700 | 0.2719 | - |
0.6518 | 30800 | 0.2162 | - |
0.6539 | 30900 | 0.2947 | - |
0.6560 | 31000 | 0.2144 | - |
0.6581 | 31100 | 0.2391 | - |
0.6603 | 31200 | 0.2572 | - |
0.6624 | 31300 | 0.1977 | - |
0.6645 | 31400 | 0.2678 | - |
0.6666 | 31500 | 0.2353 | - |
0.6687 | 31600 | 0.1911 | - |
0.6708 | 31700 | 0.2844 | - |
0.6730 | 31800 | 0.2689 | - |
0.6751 | 31900 | 0.2491 | - |
0.6772 | 32000 | 0.2259 | - |
0.6793 | 32100 | 0.2248 | - |
0.6814 | 32200 | 0.2462 | - |
0.6835 | 32300 | 0.2135 | - |
0.6857 | 32400 | 0.2085 | - |
0.6878 | 32500 | 0.227 | - |
0.6899 | 32600 | 0.2488 | - |
0.6920 | 32700 | 0.2614 | - |
0.6941 | 32800 | 0.2274 | - |
0.6962 | 32900 | 0.2389 | - |
0.6984 | 33000 | 0.2573 | - |
0.7005 | 33100 | 0.245 | - |
0.7026 | 33200 | 0.21 | - |
0.7047 | 33300 | 0.2196 | - |
0.7068 | 33400 | 0.2218 | - |
0.7089 | 33500 | 0.2092 | - |
0.7111 | 33600 | 0.2526 | - |
0.7132 | 33700 | 0.2275 | - |
0.7153 | 33800 | 0.2622 | - |
0.7174 | 33900 | 0.2469 | - |
0.7195 | 34000 | 0.2157 | - |
0.7216 | 34100 | 0.2326 | - |
0.7237 | 34200 | 0.268 | - |
0.7259 | 34300 | 0.2628 | - |
0.7280 | 34400 | 0.2503 | - |
0.7301 | 34500 | 0.2101 | - |
0.7322 | 34600 | 0.237 | - |
0.7343 | 34700 | 0.233 | - |
0.7364 | 34800 | 0.2077 | - |
0.7386 | 34900 | 0.259 | - |
0.7407 | 35000 | 0.2312 | 0.2284 |
0.7428 | 35100 | 0.287 | - |
0.7449 | 35200 | 0.2278 | - |
0.7470 | 35300 | 0.2618 | - |
0.7491 | 35400 | 0.2298 | - |
0.7513 | 35500 | 0.195 | - |
0.7534 | 35600 | 0.2248 | - |
0.7555 | 35700 | 0.2234 | - |
0.7576 | 35800 | 0.2218 | - |
0.7597 | 35900 | 0.2002 | - |
0.7618 | 36000 | 0.2158 | - |
0.7640 | 36100 | 0.1919 | - |
0.7661 | 36200 | 0.2972 | - |
0.7682 | 36300 | 0.2665 | - |
0.7703 | 36400 | 0.2114 | - |
0.7724 | 36500 | 0.1879 | - |
0.7745 | 36600 | 0.2137 | - |
0.7767 | 36700 | 0.2847 | - |
0.7788 | 36800 | 0.2372 | - |
0.7809 | 36900 | 0.2058 | - |
0.7830 | 37000 | 0.2205 | - |
0.7851 | 37100 | 0.2012 | - |
0.7872 | 37200 | 0.2057 | - |
0.7894 | 37300 | 0.1932 | - |
0.7915 | 37400 | 0.2261 | - |
0.7936 | 37500 | 0.2633 | - |
0.7957 | 37600 | 0.1558 | - |
0.7978 | 37700 | 0.2064 | - |
0.7999 | 37800 | 0.2166 | - |
0.8020 | 37900 | 0.2249 | - |
0.8042 | 38000 | 0.2626 | - |
0.8063 | 38100 | 0.1945 | - |
0.8084 | 38200 | 0.2611 | - |
0.8105 | 38300 | 0.199 | - |
0.8126 | 38400 | 0.2004 | - |
0.8147 | 38500 | 0.2506 | - |
0.8169 | 38600 | 0.1722 | - |
0.8190 | 38700 | 0.1959 | - |
0.8211 | 38800 | 0.2505 | - |
0.8232 | 38900 | 0.2343 | - |
0.8253 | 39000 | 0.2353 | - |
0.8274 | 39100 | 0.22 | - |
0.8296 | 39200 | 0.2089 | - |
0.8317 | 39300 | 0.2416 | - |
0.8338 | 39400 | 0.1916 | - |
0.8359 | 39500 | 0.2387 | - |
0.8380 | 39600 | 0.2475 | - |
0.8401 | 39700 | 0.2189 | - |
0.8423 | 39800 | 0.2141 | - |
0.8444 | 39900 | 0.2008 | - |
0.8465 | 40000 | 0.2489 | 0.2253 |
0.8486 | 40100 | 0.2258 | - |
0.8507 | 40200 | 0.2341 | - |
0.8528 | 40300 | 0.2377 | - |
0.8550 | 40400 | 0.194 | - |
0.8571 | 40500 | 0.2144 | - |
0.8592 | 40600 | 0.2605 | - |
0.8613 | 40700 | 0.2517 | - |
0.8634 | 40800 | 0.2044 | - |
0.8655 | 40900 | 0.2259 | - |
0.8677 | 41000 | 0.2141 | - |
0.8698 | 41100 | 0.1895 | - |
0.8719 | 41200 | 0.2361 | - |
0.8740 | 41300 | 0.1978 | - |
0.8761 | 41400 | 0.2089 | - |
0.8782 | 41500 | 0.2258 | - |
0.8803 | 41600 | 0.2368 | - |
0.8825 | 41700 | 0.2473 | - |
0.8846 | 41800 | 0.2185 | - |
0.8867 | 41900 | 0.212 | - |
0.8888 | 42000 | 0.2469 | - |
0.8909 | 42100 | 0.1817 | - |
0.8930 | 42200 | 0.1884 | - |
0.8952 | 42300 | 0.207 | - |
0.8973 | 42400 | 0.2422 | - |
0.8994 | 42500 | 0.2606 | - |
0.9015 | 42600 | 0.2266 | - |
0.9036 | 42700 | 0.2103 | - |
0.9057 | 42800 | 0.2712 | - |
0.9079 | 42900 | 0.1944 | - |
0.9100 | 43000 | 0.2003 | - |
0.9121 | 43100 | 0.1991 | - |
0.9142 | 43200 | 0.2129 | - |
0.9163 | 43300 | 0.2465 | - |
0.9184 | 43400 | 0.1764 | - |
0.9206 | 43500 | 0.2365 | - |
0.9227 | 43600 | 0.2054 | - |
0.9248 | 43700 | 0.2551 | - |
0.9269 | 43800 | 0.2322 | - |
0.9290 | 43900 | 0.2213 | - |
0.9311 | 44000 | 0.1962 | - |
0.9333 | 44100 | 0.1988 | - |
0.9354 | 44200 | 0.1982 | - |
0.9375 | 44300 | 0.2193 | - |
0.9396 | 44400 | 0.2378 | - |
0.9417 | 44500 | 0.2244 | - |
0.9438 | 44600 | 0.2296 | - |
0.9460 | 44700 | 0.2446 | - |
0.9481 | 44800 | 0.2206 | - |
0.9502 | 44900 | 0.1815 | - |
0.9523 | 45000 | 0.2385 | 0.22 |
0.9544 | 45100 | 0.2106 | - |
0.9565 | 45200 | 0.1929 | - |
0.9586 | 45300 | 0.181 | - |
0.9608 | 45400 | 0.1908 | - |
0.9629 | 45500 | 0.1926 | - |
0.9650 | 45600 | 0.1922 | - |
0.9671 | 45700 | 0.2003 | - |
0.9692 | 45800 | 0.2377 | - |
0.9713 | 45900 | 0.2069 | - |
0.9735 | 46000 | 0.2024 | - |
0.9756 | 46100 | 0.1795 | - |
0.9777 | 46200 | 0.2372 | - |
0.9798 | 46300 | 0.2135 | - |
0.9819 | 46400 | 0.2396 | - |
0.9840 | 46500 | 0.2295 | - |
0.9862 | 46600 | 0.2235 | - |
0.9883 | 46700 | 0.2427 | - |
0.9904 | 46800 | 0.2145 | - |
0.9925 | 46900 | 0.2231 | - |
0.9946 | 47000 | 0.2401 | - |
0.9967 | 47100 | 0.1764 | - |
0.9989 | 47200 | 0.1943 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.1.0.dev0
- Transformers: 4.42.4
- PyTorch: 2.3.1+cpu
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for RinaChen/GuWen-all-mpnet-base-v2-new
Base model
sentence-transformers/all-mpnet-base-v2