metadata
license: llama3.1
language:
- en
inference: false
fine-tuning: false
tags:
- nvidia
- llama3.1
- mlx
datasets:
- nvidia/HelpSteer2
base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
pipeline_tag: text-generation
library_name: transformers
RohitPoreddy/Llama-3.1-Nemotron-70B-Instruct-HF-Q4-mlx
The Model RohitPoreddy/Llama-3.1-Nemotron-70B-Instruct-HF-Q4-mlx was converted to MLX format from nvidia/Llama-3.1-Nemotron-70B-Instruct-HF using mlx-lm version 0.19.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("RohitPoreddy/Llama-3.1-Nemotron-70B-Instruct-HF-Q4-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)