RonTon05's picture
End of training
4e353ed verified
|
raw
history blame
2.79 kB
metadata
base_model: vinai/phobert-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: PhoBert_Dataset59KBoDuoi
    results: []

PhoBert_Dataset59KBoDuoi

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2985
  • Accuracy: 0.9307
  • F1: 0.9312

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0230 200 0.1511 0.9390 0.9395
No log 2.0460 400 0.1571 0.9351 0.9356
No log 3.0691 600 0.1750 0.9340 0.9347
0.15 4.0921 800 0.1731 0.9334 0.9339
0.15 5.1151 1000 0.1912 0.9321 0.9326
0.15 6.1381 1200 0.2302 0.9273 0.9283
0.15 7.1611 1400 0.2180 0.9325 0.9330
0.0918 8.1841 1600 0.2620 0.9292 0.9300
0.0918 9.2072 1800 0.2363 0.9326 0.9329
0.0918 10.2302 2000 0.2687 0.9243 0.9252
0.0918 11.2532 2200 0.2621 0.9312 0.9317
0.0608 12.2762 2400 0.2741 0.9306 0.9312
0.0608 13.2992 2600 0.2614 0.9302 0.9306
0.0608 14.3223 2800 0.2830 0.9317 0.9321
0.0608 15.3453 3000 0.2874 0.9285 0.9291
0.0429 16.3683 3200 0.2844 0.9318 0.9323
0.0429 17.3913 3400 0.2836 0.9310 0.9313
0.0429 18.4143 3600 0.2885 0.9309 0.9312
0.0429 19.4373 3800 0.2985 0.9307 0.9312

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1