Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: mistralai/Mistral-7B-Instruct-v0.2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

chat_template: chatml
datasets:
  - path: Howard881010/climate
    type: alpaca
    train_on_split: train
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./finetune/outputs/climate

adapter: qlora
lora_model_dir:

sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: finetune
wandb_entity:
wandb_watch:
wandb_name: climate
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 10
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: 
flash_attention: true
eval_sample_packing: False

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
# For finetune
seed: 42

Visualize in Weights & Biases

finetune/outputs/climate

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0009

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
1.7628 0.0056 1 1.9544
1.1905 0.2542 45 1.2650
1.0583 0.5085 90 1.1289
0.9094 0.7627 135 0.9717
0.6033 1.0169 180 0.7865
0.6043 1.2712 225 0.6347
0.3525 1.5254 270 0.4456
0.1879 1.7797 315 0.2918
0.1367 2.0339 360 0.1608
0.1627 2.2881 405 0.1098
0.1465 2.5424 450 0.0722
0.1019 2.7966 495 0.0458
0.161 3.0508 540 0.0354
0.0597 3.3051 585 0.0189
0.1038 3.5593 630 0.0130
0.0754 3.8136 675 0.0078
0.0632 4.0678 720 0.0051
0.0364 4.3220 765 0.0032
0.1342 4.5763 810 0.0019
0.0776 4.8305 855 0.0014
0.0337 5.0847 900 0.0012
0.0591 5.3390 945 0.0011
0.0171 5.5932 990 0.0010
0.0732 5.8475 1035 0.0010
0.0538 6.1017 1080 0.0010
0.0234 6.3559 1125 0.0010
0.1259 6.6102 1170 0.0009
0.1216 6.8644 1215 0.0009
0.0687 7.1186 1260 0.0009
0.1172 7.3729 1305 0.0009
0.1007 7.6271 1350 0.0009
0.1372 7.8814 1395 0.0009
0.0925 8.1356 1440 0.0009
0.0342 8.3898 1485 0.0009
0.0688 8.6441 1530 0.0009
0.0576 8.8983 1575 0.0009
0.0575 9.1525 1620 0.0009
0.0707 9.4068 1665 0.0009
0.1519 9.6610 1710 0.0009
0.0666 9.9153 1755 0.0009

Framework versions

  • PEFT 0.11.1
  • Transformers 4.43.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Rose-STL-Lab/climate

Adapter
(891)
this model