See axolotl config
axolotl version: 0.4.1
base_model: mistralai/Mistral-7B-Instruct-v0.2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: chatml
datasets:
- path: Howard881010/climate
type: alpaca
train_on_split: train
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./finetune/outputs/climate
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: finetune
wandb_entity:
wandb_watch:
wandb_name: climate
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 10
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
eval_sample_packing: False
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
# For finetune
seed: 42
finetune/outputs/climate
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0009
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7628 | 0.0056 | 1 | 1.9544 |
1.1905 | 0.2542 | 45 | 1.2650 |
1.0583 | 0.5085 | 90 | 1.1289 |
0.9094 | 0.7627 | 135 | 0.9717 |
0.6033 | 1.0169 | 180 | 0.7865 |
0.6043 | 1.2712 | 225 | 0.6347 |
0.3525 | 1.5254 | 270 | 0.4456 |
0.1879 | 1.7797 | 315 | 0.2918 |
0.1367 | 2.0339 | 360 | 0.1608 |
0.1627 | 2.2881 | 405 | 0.1098 |
0.1465 | 2.5424 | 450 | 0.0722 |
0.1019 | 2.7966 | 495 | 0.0458 |
0.161 | 3.0508 | 540 | 0.0354 |
0.0597 | 3.3051 | 585 | 0.0189 |
0.1038 | 3.5593 | 630 | 0.0130 |
0.0754 | 3.8136 | 675 | 0.0078 |
0.0632 | 4.0678 | 720 | 0.0051 |
0.0364 | 4.3220 | 765 | 0.0032 |
0.1342 | 4.5763 | 810 | 0.0019 |
0.0776 | 4.8305 | 855 | 0.0014 |
0.0337 | 5.0847 | 900 | 0.0012 |
0.0591 | 5.3390 | 945 | 0.0011 |
0.0171 | 5.5932 | 990 | 0.0010 |
0.0732 | 5.8475 | 1035 | 0.0010 |
0.0538 | 6.1017 | 1080 | 0.0010 |
0.0234 | 6.3559 | 1125 | 0.0010 |
0.1259 | 6.6102 | 1170 | 0.0009 |
0.1216 | 6.8644 | 1215 | 0.0009 |
0.0687 | 7.1186 | 1260 | 0.0009 |
0.1172 | 7.3729 | 1305 | 0.0009 |
0.1007 | 7.6271 | 1350 | 0.0009 |
0.1372 | 7.8814 | 1395 | 0.0009 |
0.0925 | 8.1356 | 1440 | 0.0009 |
0.0342 | 8.3898 | 1485 | 0.0009 |
0.0688 | 8.6441 | 1530 | 0.0009 |
0.0576 | 8.8983 | 1575 | 0.0009 |
0.0575 | 9.1525 | 1620 | 0.0009 |
0.0707 | 9.4068 | 1665 | 0.0009 |
0.1519 | 9.6610 | 1710 | 0.0009 |
0.0666 | 9.9153 | 1755 | 0.0009 |
Framework versions
- PEFT 0.11.1
- Transformers 4.43.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for Rose-STL-Lab/climate
Base model
mistralai/Mistral-7B-Instruct-v0.2