Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: mistralai/Mistral-7B-Instruct-v0.2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

chat_template: chatml
datasets:
  - path: Howard881010/medical
    type: alpaca
    train_on_split: train
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./finetune/outputs/medical

adapter: qlora
lora_model_dir:

sequence_len: 1500
sample_packing: false
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: finetune
wandb_entity:
wandb_watch:
wandb_name: medical
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 10
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: 
flash_attention: true
eval_sample_packing: False

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
# For finetune
seed: 42

Visualize in Weights & Biases

finetune/outputs/medical

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4607

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
2.581 0.0005 1 2.3899
0.7439 0.2502 536 0.9957
0.6364 0.5004 1072 1.0250
0.4046 0.7505 1608 1.0972
0.2551 1.0007 2144 1.2306
0.1894 1.2509 2680 1.2541
0.1015 1.5011 3216 1.3733
0.1441 1.7512 3752 1.4618
0.0604 2.0014 4288 1.5229
0.058 2.2516 4824 1.5635
0.0669 2.5018 5360 1.6184
0.0604 2.7519 5896 1.6690
0.0352 3.0021 6432 1.6985
0.0296 3.2523 6968 1.7366
0.0262 3.5025 7504 1.7928
0.0214 3.7526 8040 1.8352
0.0134 4.0028 8576 1.9588
0.0108 4.2530 9112 1.9946
0.0112 4.5032 9648 1.9847
0.0107 4.7533 10184 1.9900
0.0052 5.0035 10720 2.0806
0.0067 5.2537 11256 2.1444
0.0053 5.5039 11792 2.2294
0.0055 5.7540 12328 2.3097
0.0067 6.0042 12864 2.3069
0.0004 6.2544 13400 2.3435
0.0005 6.5046 13936 2.2964
0.0004 6.7547 14472 2.3073
0.0002 7.0049 15008 2.3668
0.0002 7.2551 15544 2.3933
0.0001 7.5053 16080 2.4192
0.0002 7.7554 16616 2.4246
0.0001 8.0056 17152 2.4351
0.0001 8.2558 17688 2.4445
0.0002 8.5060 18224 2.4529
0.0002 8.7561 18760 2.4571
0.0001 9.0063 19296 2.4593
0.0001 9.2565 19832 2.4603
0.0001 9.5067 20368 2.4605
0.0013 9.7568 20904 2.4607

Framework versions

  • PEFT 0.11.1
  • Transformers 4.43.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Rose-STL-Lab/medical

Adapter
(891)
this model