SUJET AI bge-base Finance Matryoshka
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Rubyando59/bge-base-financial-matryoshka")
sentences = [
'obligations (whether due to financial difficulties or other reasons), or make adverse changes in the pricing or other \nmaterial terms of our arrangements with them. \nWe have experienced and/or may in the future experience supply shortages, price increases, quality issues, and/\nor longer lead times that could negatively affect our operations, driven by raw material, component availability, \nmanufacturing capacity, labor shortages, industry allocations, logistics capacity, inflation, foreign currency exchange \nrates, tariffs, sanctions and export controls, trade disputes and barriers, forced labor concerns, sustainability sourcing \nrequirements, geopolitical tensions, armed conflicts, natural disasters or pandemics, the effects of climate change \n(such as sea level rise, drought, flooding, heat waves, wildfires and resultant air quality effects and power shutdowns \nassociated with wildfire prevention, and increased storm severity), power loss, and significant changes in the financial \nor business condition of our suppliers. Some of the components we use in our technical infrastructure and our device s \nare available from only one or limited sources, and we may not be able to find replacement vendors on favorable terms \nin the event of a supply chain disruption. A significant supply interruption that affects us or our vendors could delay \ncritical data center upgrades or expansions and delay consumer product availability . \nWe may enter into long-term contracts for materials and products that commit us to significant terms and \nconditions. We may face costs for materials and products that are not consumed due to market demand, technological \nchange, changed consumer preferences, quality, product recalls, and warranty issues. For instance, because certain of \nour hardware supply contracts have volume-based pricing or minimum purchase requirements, if the volume of sales \nof our devices decreases or does not reach projected targets, we could face increased materials and manufacturing \ncosts or other financial liabilities that could make our products more costly per unit to manufacture and harm our \nfinancial condition and operating results. Furthermore, certain of our competitors may negotiate more favorable \ncontractual terms based on volume and other commitments that may provide them with competitive advantages and \nmay affect our supply. \nOur device s have had, and in the future may have, quality issues resulting from design, manufacturing, or \noperations. Sometimes, these issues may be caused by components we purchase from other manufacturers or \nsuppliers. If the quality of our products and services does not meet expectations or our products or services are \ndefective or require a recall, it could harm our reputation, financial condition, and operating results. \nWe require our suppliers and business partners to comply with laws and, where applicable, our company policies \nand practices, such as the Google Supplier Code of Conduct, regarding workplace and employment practices, data \nsecurity, environmental compliance, and intellectual property licensing, but we do not control them or their practices. \nViolations of law or unethical business practices could result in supply chain disruptions, canceled orders, harm to key \nrelationships, and damage to our reputation. Their failure to procure necessary license rights to intellectual property \ncould affect our ability to sell our products or services and expose us to litigation or financial claims. \nInterruption to, interference with, or failure of our complex information technology and communications \nsystems could hurt our ability to effectively provide our products and services, which could harm our \nreputation, financial condition, and operating results. \nThe availability of our products and services and fulfillment of our customer contracts depend on the continuing \noperation of our information technology and communications systems. Our systems are vulnerable to damage, \ninterference, or interruption from modifications or upgrades, terrorist attacks, state-sponsored attacks, natural disasters \nor pandemics, geopolitical tensions or armed conflicts, export controls and sanctions, the effects of climate change \n(such as sea level rise, drought, flooding, heat waves, wildfires and resultant air quality effects and power shutdowns \nassociated with wildfire prevention, and increased storm severity), power loss, utility outages, telecommunications \nfailures, computer viruses, software bugs, ransomware attacks, supply-chain attacks, computer denial of service \nattacks, phishing schemes, or other attempts to harm or access our systems. Some of our data centers are located in \nareas with a high risk of major earthquakes or other natural disasters. Our data centers are also subject to break-ins, \nsabotage, and intentional acts of vandalism, and, in some cases, to potential disruptions resulting from problems \nexperienced by facility operators or disruptions as a result of geopolitical tensions and conflicts happening in the area. \nSome of our systems are not fully redundant, and disaster recovery planning cannot account for all eventualities. The \noccurrence of a natural disaster or pandemic, closure of a facility, or other unanticipated problems affecting our data \ncenters could result in lengthy interruptions in our service.',
"What are the implications of increased logistics capacity costs on a company's overall financial performance?",
"How might legal proceedings and regulatory scrutiny affect a company's financial condition and operating results?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0154 |
cosine_accuracy@3 |
0.0466 |
cosine_accuracy@5 |
0.0699 |
cosine_accuracy@10 |
0.1308 |
cosine_precision@1 |
0.0154 |
cosine_precision@3 |
0.0155 |
cosine_precision@5 |
0.014 |
cosine_precision@10 |
0.0131 |
cosine_recall@1 |
0.0154 |
cosine_recall@3 |
0.0466 |
cosine_recall@5 |
0.0699 |
cosine_recall@10 |
0.1308 |
cosine_ndcg@10 |
0.0621 |
cosine_mrr@10 |
0.0416 |
cosine_map@100 |
0.0576 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.015 |
cosine_accuracy@3 |
0.0453 |
cosine_accuracy@5 |
0.0671 |
cosine_accuracy@10 |
0.1276 |
cosine_precision@1 |
0.015 |
cosine_precision@3 |
0.0151 |
cosine_precision@5 |
0.0134 |
cosine_precision@10 |
0.0128 |
cosine_recall@1 |
0.015 |
cosine_recall@3 |
0.0453 |
cosine_recall@5 |
0.0671 |
cosine_recall@10 |
0.1276 |
cosine_ndcg@10 |
0.0604 |
cosine_mrr@10 |
0.0403 |
cosine_map@100 |
0.0561 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0122 |
cosine_accuracy@3 |
0.0406 |
cosine_accuracy@5 |
0.0627 |
cosine_accuracy@10 |
0.1173 |
cosine_precision@1 |
0.0122 |
cosine_precision@3 |
0.0135 |
cosine_precision@5 |
0.0125 |
cosine_precision@10 |
0.0117 |
cosine_recall@1 |
0.0122 |
cosine_recall@3 |
0.0406 |
cosine_recall@5 |
0.0627 |
cosine_recall@10 |
0.1173 |
cosine_ndcg@10 |
0.0548 |
cosine_mrr@10 |
0.0361 |
cosine_map@100 |
0.0507 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0102 |
cosine_accuracy@3 |
0.0354 |
cosine_accuracy@5 |
0.0512 |
cosine_accuracy@10 |
0.0973 |
cosine_precision@1 |
0.0102 |
cosine_precision@3 |
0.0118 |
cosine_precision@5 |
0.0102 |
cosine_precision@10 |
0.0097 |
cosine_recall@1 |
0.0102 |
cosine_recall@3 |
0.0354 |
cosine_recall@5 |
0.0512 |
cosine_recall@10 |
0.0973 |
cosine_ndcg@10 |
0.0456 |
cosine_mrr@10 |
0.0301 |
cosine_map@100 |
0.0427 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0059 |
cosine_accuracy@3 |
0.0213 |
cosine_accuracy@5 |
0.0337 |
cosine_accuracy@10 |
0.0674 |
cosine_precision@1 |
0.0059 |
cosine_precision@3 |
0.0071 |
cosine_precision@5 |
0.0067 |
cosine_precision@10 |
0.0067 |
cosine_recall@1 |
0.0059 |
cosine_recall@3 |
0.0213 |
cosine_recall@5 |
0.0337 |
cosine_recall@10 |
0.0674 |
cosine_ndcg@10 |
0.0304 |
cosine_mrr@10 |
0.0194 |
cosine_map@100 |
0.029 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 10
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.0516 |
10 |
6.6963 |
- |
- |
- |
- |
- |
0.1033 |
20 |
7.634 |
- |
- |
- |
- |
- |
0.1549 |
30 |
6.8573 |
- |
- |
- |
- |
- |
0.2065 |
40 |
8.1731 |
- |
- |
- |
- |
- |
0.2581 |
50 |
7.2853 |
- |
- |
- |
- |
- |
0.3098 |
60 |
7.6009 |
- |
- |
- |
- |
- |
0.3614 |
70 |
9.0776 |
- |
- |
- |
- |
- |
0.4130 |
80 |
7.8738 |
- |
- |
- |
- |
- |
0.4647 |
90 |
10.46 |
- |
- |
- |
- |
- |
0.5163 |
100 |
10.7396 |
- |
- |
- |
- |
- |
0.5679 |
110 |
10.3513 |
- |
- |
- |
- |
- |
0.6196 |
120 |
10.654 |
- |
- |
- |
- |
- |
0.6712 |
130 |
12.6157 |
- |
- |
- |
- |
- |
0.7228 |
140 |
11.955 |
- |
- |
- |
- |
- |
0.7744 |
150 |
13.2498 |
- |
- |
- |
- |
- |
0.8261 |
160 |
11.2981 |
- |
- |
- |
- |
- |
0.8777 |
170 |
13.8403 |
- |
- |
- |
- |
- |
0.9293 |
180 |
9.4428 |
- |
- |
- |
- |
- |
0.9810 |
190 |
8.1768 |
- |
- |
- |
- |
- |
1.0016 |
194 |
- |
0.0427 |
0.0507 |
0.0561 |
0.029 |
0.0576 |
1.0303 |
200 |
7.0981 |
- |
- |
- |
- |
- |
1.0820 |
210 |
7.3113 |
- |
- |
- |
- |
- |
1.1336 |
220 |
7.0259 |
- |
- |
- |
- |
- |
1.1852 |
230 |
7.5874 |
- |
- |
- |
- |
- |
1.2369 |
240 |
7.65 |
- |
- |
- |
- |
- |
1.2885 |
250 |
7.2387 |
- |
- |
- |
- |
- |
1.3401 |
260 |
9.001 |
- |
- |
- |
- |
- |
1.3917 |
270 |
7.5975 |
- |
- |
- |
- |
- |
1.4434 |
280 |
9.9568 |
- |
- |
- |
- |
- |
1.4950 |
290 |
10.4123 |
- |
- |
- |
- |
- |
1.5466 |
300 |
10.5535 |
- |
- |
- |
- |
- |
1.5983 |
310 |
9.8199 |
- |
- |
- |
- |
- |
1.6499 |
320 |
12.7258 |
- |
- |
- |
- |
- |
1.7015 |
330 |
11.9423 |
- |
- |
- |
- |
- |
1.7531 |
340 |
12.7364 |
- |
- |
- |
- |
- |
1.8048 |
350 |
12.1926 |
- |
- |
- |
- |
- |
1.8564 |
360 |
12.926 |
- |
- |
- |
- |
- |
1.9080 |
370 |
11.8007 |
- |
- |
- |
- |
- |
1.9597 |
380 |
8.7379 |
- |
- |
- |
- |
- |
2.0010 |
388 |
- |
0.0427 |
0.0507 |
0.0561 |
0.0290 |
0.0576 |
2.0090 |
390 |
7.1936 |
- |
- |
- |
- |
- |
2.0607 |
400 |
6.7359 |
- |
- |
- |
- |
- |
2.1123 |
410 |
7.4212 |
- |
- |
- |
- |
- |
2.1639 |
420 |
7.346 |
- |
- |
- |
- |
- |
2.2156 |
430 |
7.6784 |
- |
- |
- |
- |
- |
2.2672 |
440 |
7.5079 |
- |
- |
- |
- |
- |
2.3188 |
450 |
7.8875 |
- |
- |
- |
- |
- |
2.3704 |
460 |
8.7154 |
- |
- |
- |
- |
- |
2.4221 |
470 |
8.1278 |
- |
- |
- |
- |
- |
2.4737 |
480 |
11.1214 |
- |
- |
- |
- |
- |
2.5253 |
490 |
10.5293 |
- |
- |
- |
- |
- |
2.5770 |
500 |
9.9882 |
- |
- |
- |
- |
- |
2.6286 |
510 |
11.5283 |
- |
- |
- |
- |
- |
2.6802 |
520 |
12.4337 |
- |
- |
- |
- |
- |
2.7318 |
530 |
11.641 |
- |
- |
- |
- |
- |
2.7835 |
540 |
13.3482 |
- |
- |
- |
- |
- |
2.8351 |
550 |
11.7302 |
- |
- |
- |
- |
- |
2.8867 |
560 |
13.7171 |
- |
- |
- |
- |
- |
2.9384 |
570 |
8.9323 |
- |
- |
- |
- |
- |
2.9900 |
580 |
7.4869 |
- |
- |
- |
- |
- |
3.0003 |
582 |
- |
0.0427 |
0.0507 |
0.0561 |
0.0290 |
0.0576 |
3.0394 |
590 |
6.9978 |
- |
- |
- |
- |
- |
3.0910 |
600 |
7.33 |
- |
- |
- |
- |
- |
3.1426 |
610 |
7.1879 |
- |
- |
- |
- |
- |
3.1943 |
620 |
7.9204 |
- |
- |
- |
- |
- |
3.2459 |
630 |
7.4435 |
- |
- |
- |
- |
- |
3.2975 |
640 |
7.4079 |
- |
- |
- |
- |
- |
3.3491 |
650 |
9.2445 |
- |
- |
- |
- |
- |
3.4008 |
660 |
7.1794 |
- |
- |
- |
- |
- |
3.4524 |
670 |
10.4496 |
- |
- |
- |
- |
- |
3.5040 |
680 |
10.7556 |
- |
- |
- |
- |
- |
3.5557 |
690 |
10.3543 |
- |
- |
- |
- |
- |
3.6073 |
700 |
9.9478 |
- |
- |
- |
- |
- |
3.6589 |
710 |
12.6559 |
- |
- |
- |
- |
- |
3.7106 |
720 |
12.2463 |
- |
- |
- |
- |
- |
3.7622 |
730 |
12.8381 |
- |
- |
- |
- |
- |
3.8138 |
740 |
11.726 |
- |
- |
- |
- |
- |
3.8654 |
750 |
13.4883 |
- |
- |
- |
- |
- |
3.9171 |
760 |
10.7751 |
- |
- |
- |
- |
- |
3.9687 |
770 |
8.5484 |
- |
- |
- |
- |
- |
3.9997 |
776 |
- |
0.0427 |
0.0507 |
0.0561 |
0.0290 |
0.0576 |
4.0181 |
780 |
7.1582 |
- |
- |
- |
- |
- |
4.0697 |
790 |
7.0161 |
- |
- |
- |
- |
- |
4.1213 |
800 |
7.11 |
- |
- |
- |
- |
- |
4.1730 |
810 |
7.4557 |
- |
- |
- |
- |
- |
4.2246 |
820 |
7.723 |
- |
- |
- |
- |
- |
4.2762 |
830 |
7.2889 |
- |
- |
- |
- |
- |
4.3278 |
840 |
8.3884 |
- |
- |
- |
- |
- |
4.3795 |
850 |
8.1581 |
- |
- |
- |
- |
- |
4.4311 |
860 |
9.1386 |
- |
- |
- |
- |
- |
4.4827 |
870 |
10.706 |
- |
- |
- |
- |
- |
4.5344 |
880 |
10.4258 |
- |
- |
- |
- |
- |
4.5860 |
890 |
9.9659 |
- |
- |
- |
- |
- |
4.6376 |
900 |
11.8535 |
- |
- |
- |
- |
- |
4.6893 |
910 |
12.5578 |
- |
- |
- |
- |
- |
4.7409 |
920 |
11.834 |
- |
- |
- |
- |
- |
4.7925 |
930 |
12.5328 |
- |
- |
- |
- |
- |
4.8441 |
940 |
12.6998 |
- |
- |
- |
- |
- |
4.8958 |
950 |
12.9728 |
- |
- |
- |
- |
- |
4.9474 |
960 |
8.9204 |
- |
- |
- |
- |
- |
4.9990 |
970 |
7.3909 |
0.0427 |
0.0507 |
0.0561 |
0.0290 |
0.0576 |
5.0484 |
980 |
6.6683 |
- |
- |
- |
- |
- |
5.1000 |
990 |
7.5538 |
- |
- |
- |
- |
- |
5.1517 |
1000 |
6.9256 |
- |
- |
- |
- |
- |
5.2033 |
1010 |
8.0908 |
- |
- |
- |
- |
- |
5.2549 |
1020 |
7.254 |
- |
- |
- |
- |
- |
5.3066 |
1030 |
7.6558 |
- |
- |
- |
- |
- |
5.3582 |
1040 |
9.2184 |
- |
- |
- |
- |
- |
5.4098 |
1050 |
7.5886 |
- |
- |
- |
- |
- |
5.4614 |
1060 |
10.4976 |
- |
- |
- |
- |
- |
5.5131 |
1070 |
10.785 |
- |
- |
- |
- |
- |
5.5647 |
1080 |
10.2376 |
- |
- |
- |
- |
- |
5.6163 |
1090 |
10.4871 |
- |
- |
- |
- |
- |
5.6680 |
1100 |
12.6986 |
- |
- |
- |
- |
- |
5.7196 |
1110 |
12.0688 |
- |
- |
- |
- |
- |
5.7712 |
1120 |
13.1161 |
- |
- |
- |
- |
- |
5.8228 |
1130 |
11.3866 |
- |
- |
- |
- |
- |
5.8745 |
1140 |
13.7281 |
- |
- |
- |
- |
- |
5.9261 |
1150 |
9.8432 |
- |
- |
- |
- |
- |
5.9777 |
1160 |
8.2606 |
- |
- |
- |
- |
- |
5.9984 |
1164 |
- |
0.0427 |
0.0507 |
0.0561 |
0.0290 |
0.0576 |
6.0271 |
1170 |
7.0799 |
- |
- |
- |
- |
- |
6.0787 |
1180 |
7.2981 |
- |
- |
- |
- |
- |
6.1304 |
1190 |
7.0085 |
- |
- |
- |
- |
- |
6.1820 |
1200 |
7.4587 |
- |
- |
- |
- |
- |
6.2336 |
1210 |
7.8467 |
- |
- |
- |
- |
- |
6.2853 |
1220 |
7.2008 |
- |
- |
- |
- |
- |
6.3369 |
1230 |
8.8152 |
- |
- |
- |
- |
- |
6.3885 |
1240 |
7.7205 |
- |
- |
- |
- |
- |
6.4401 |
1250 |
9.9131 |
- |
- |
- |
- |
- |
6.4918 |
1260 |
10.212 |
- |
- |
- |
- |
- |
6.5434 |
1270 |
10.6791 |
- |
- |
- |
- |
- |
6.5950 |
1280 |
9.8454 |
- |
- |
- |
- |
- |
6.6467 |
1290 |
12.4647 |
- |
- |
- |
- |
- |
6.6983 |
1300 |
11.8962 |
- |
- |
- |
- |
- |
6.7499 |
1310 |
12.8014 |
- |
- |
- |
- |
- |
6.8015 |
1320 |
12.1836 |
- |
- |
- |
- |
- |
6.8532 |
1330 |
12.9114 |
- |
- |
- |
- |
- |
6.9048 |
1340 |
12.1711 |
- |
- |
- |
- |
- |
6.9564 |
1350 |
8.8125 |
- |
- |
- |
- |
- |
6.9977 |
1358 |
- |
0.0427 |
0.0507 |
0.0561 |
0.0290 |
0.0576 |
7.0058 |
1360 |
7.2281 |
- |
- |
- |
- |
- |
7.0574 |
1370 |
6.6681 |
- |
- |
- |
- |
- |
7.1091 |
1380 |
7.5282 |
- |
- |
- |
- |
- |
7.1607 |
1390 |
7.1585 |
- |
- |
- |
- |
- |
7.2123 |
1400 |
7.8507 |
- |
- |
- |
- |
- |
7.2640 |
1410 |
7.4737 |
- |
- |
- |
- |
- |
7.3156 |
1420 |
7.6963 |
- |
- |
- |
- |
- |
7.3672 |
1430 |
8.8799 |
- |
- |
- |
- |
- |
7.4188 |
1440 |
7.9977 |
- |
- |
- |
- |
- |
7.4705 |
1450 |
10.9078 |
- |
- |
- |
- |
- |
7.5221 |
1460 |
10.5731 |
- |
- |
- |
- |
- |
7.5737 |
1470 |
10.1121 |
- |
- |
- |
- |
- |
7.6254 |
1480 |
11.2426 |
- |
- |
- |
- |
- |
7.6770 |
1490 |
12.4832 |
- |
- |
- |
- |
- |
7.7286 |
1500 |
11.6954 |
- |
- |
- |
- |
- |
7.7803 |
1510 |
13.4836 |
- |
- |
- |
- |
- |
7.8319 |
1520 |
11.4752 |
- |
- |
- |
- |
- |
7.8835 |
1530 |
13.8097 |
- |
- |
- |
- |
- |
7.9351 |
1540 |
9.0087 |
- |
- |
- |
- |
- |
7.9868 |
1550 |
7.709 |
- |
- |
- |
- |
- |
8.0023 |
1553 |
- |
0.0427 |
0.0507 |
0.0561 |
0.0290 |
0.0576 |
8.0361 |
1560 |
7.1515 |
- |
- |
- |
- |
- |
8.0878 |
1570 |
7.2816 |
- |
- |
- |
- |
- |
8.1394 |
1580 |
7.1392 |
- |
- |
- |
- |
- |
8.1910 |
1590 |
7.7863 |
- |
- |
- |
- |
- |
8.2427 |
1600 |
7.4939 |
- |
- |
- |
- |
- |
8.2943 |
1610 |
7.3074 |
- |
- |
- |
- |
- |
8.3459 |
1620 |
9.1739 |
- |
- |
- |
- |
- |
8.3975 |
1630 |
7.3667 |
- |
- |
- |
- |
- |
8.4492 |
1640 |
10.2528 |
- |
- |
- |
- |
- |
8.5008 |
1650 |
10.6824 |
- |
- |
- |
- |
- |
8.5524 |
1660 |
10.3765 |
- |
- |
- |
- |
- |
8.6041 |
1670 |
9.853 |
- |
- |
- |
- |
- |
8.6557 |
1680 |
12.8624 |
- |
- |
- |
- |
- |
8.7073 |
1690 |
12.0849 |
- |
- |
- |
- |
- |
8.7590 |
1700 |
12.7345 |
- |
- |
- |
- |
- |
8.8106 |
1710 |
11.9884 |
- |
- |
- |
- |
- |
8.8622 |
1720 |
13.2117 |
- |
- |
- |
- |
- |
8.9138 |
1730 |
11.1261 |
- |
- |
- |
- |
- |
8.9655 |
1740 |
8.5941 |
- |
- |
- |
- |
- |
9.0016 |
1747 |
- |
0.0427 |
0.0507 |
0.0561 |
0.0290 |
0.0576 |
9.0148 |
1750 |
7.2587 |
- |
- |
- |
- |
- |
9.0665 |
1760 |
6.8577 |
- |
- |
- |
- |
- |
9.1181 |
1770 |
7.2256 |
- |
- |
- |
- |
- |
9.1697 |
1780 |
7.456 |
- |
- |
- |
- |
- |
9.2214 |
1790 |
7.6563 |
- |
- |
- |
- |
- |
9.2730 |
1800 |
7.3877 |
- |
- |
- |
- |
- |
9.3246 |
1810 |
8.2009 |
- |
- |
- |
- |
- |
9.3763 |
1820 |
8.5318 |
- |
- |
- |
- |
- |
9.4279 |
1830 |
8.5052 |
- |
- |
- |
- |
- |
9.4795 |
1840 |
10.9953 |
- |
- |
- |
- |
- |
9.5311 |
1850 |
10.4012 |
- |
- |
- |
- |
- |
9.5828 |
1860 |
10.0235 |
- |
- |
- |
- |
- |
9.6344 |
1870 |
11.9031 |
- |
- |
- |
- |
- |
9.6860 |
1880 |
12.5293 |
- |
- |
- |
- |
- |
9.7377 |
1890 |
11.5157 |
- |
- |
- |
- |
- |
9.7893 |
1900 |
12.8049 |
- |
- |
- |
- |
- |
9.8409 |
1910 |
12.4659 |
- |
- |
- |
- |
- |
9.8925 |
1920 |
13.1517 |
- |
- |
- |
- |
- |
9.9442 |
1930 |
9.0604 |
0.0427 |
0.0507 |
0.0561 |
0.0290 |
0.0576 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.5.0.dev20240704+cu124
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}