File size: 80,457 Bytes
6ee389e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
---
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:99145
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: "YouTube provides people with entertainment, information, and opportunities\
    \ to learn something new. Google Assistant \noffers the best way to get things\
    \ done seamlessly across different devices, providing intelligent help throughout\
    \ a \nperson's day, no matter where they are. Google Cloud helps customers solve\
    \ today’s business challenges, improve \nproductivity, reduce costs, and unlock\
    \ new growth engines. We are continually innovating and building new products\
    \ \nand features that will help our users, partners, customers, and communities\
    \ and have invested more than $150 billion \nin research and development in the\
    \ last five years in support of these efforts .\nMaking AI H elpful for Everyone\n\
    AI is a transformational technology that can bring meaningful and positive change\
    \ to people and societies across \nthe world, and for our business. At Google,\
    \ we have been bringing AI into our products and services for more than a \ndecade\
    \ and making them available to our users. Our journey began in 2001, when machine\
    \ learning was first \nincorporated into Google Search to suggest better spellings\
    \ to users searching the web. Today, AI in our products is Table of Contents Alphabet\
    \ Inc.\n4."
  sentences:
  - In what ways does Alphabet support the financial health of its employees?
  - Analyze the potential impact of AI-driven tools on Google’s operational costs
    and overall financial health.
  - What strategies can companies implement to mitigate the financial risks associated
    with problematic content?
- source_sentence: "Executive Overview\nThe following table summarizes our consolidated\
    \ financial results (in millions, except for per share information \nand percentages):\n\
    Year Ended December 31,\n2022 2023 $ Change % Change\nConsolidated revenues $\
    \ 282,836 $ 307,394 $ 24,558  9 %\nChange in consolidated constant currency revenues(1)\
    \ 10 %\nCost of revenues $ 126,203 $ 133,332 $ 7,129  6 %\nOperating expenses\
    \ $ 81,791 $ 89,769 $ 7,978  10 %\nOperating income $ 74,842 $ 84,293 $ 9,451\
    \  13 %\nOperating margin  26 %  27 %  1 %\nOther income (expense), net $ (3,514)\
    \ $ 1,424 $ 4,938 NM\nNet income $ 59,972 $ 73,795 $ 13,823  23 %\nDiluted EPS\
    \ $ 4.56 $ 5.80 $ 1.24  27 %\nNM = Not Meaningful\n(1) See \"Use of Non-GAAP Constant\
    \ Currency Information \" below for details relating to our use of constant currency\
    \ information. \n•Revenues were $307.4 billion , an increase  of 9% year over\
    \ year, primarily driven by an increase  in Google \nServices revenues of $19.0\
    \ billion , or 8%, and an increase  in Google Cloud revenues of $6.8 billion ,\
    \ or 26%. \n•Total constant currency revenues, which exclude the effect of hedging,\
    \ increased 10% year over year.\n•Cost of revenues  was $133.3 billion , an increase\
    \  of 6% year over year, primarily driven by increase s in content \nacquisition\
    \ costs , compensation expenses, and TAC . The increase in compensation expenses\
    \ included \ncharges related to employee severance associated with the reduction\
    \ in our workforce . Additionally, cost of \nrevenues benefited from a reduction\
    \ in depreciation due to the change in estimated useful lives of our servers \n\
    and network equipment.\n•Operating expenses were $89.8 billion , an increase \
    \ of 10% year over year , primarily driven by an increase in \ncompensation expenses\
    \  and charges related to our office space optimization efforts . The increase\
    \ in \ncompensation expenses was largely  the result of  charges related to employee\
    \ severance associated with the \nreduction in our workforce  and an increase\
    \ in SBC expense.  Operating  expenses benefited from  the change in \nthe estimated\
    \ useful lives of our servers and certain network equipment.\nOther Information:\n\
    •In January 2023, we announced a reduction of our workforce , and as a result\
    \ we recorded employee \nseverance and related charges of $2.1 billion  for the\
    \ year ended December 31, 2023. In addition, we are \ntaking actions to optimize\
    \ our global office space. As a result, exit charges recorded during the year\
    \ ended \nDecember 31, 2023, were $1.8 billion . In addition to these exit charges,\
    \ for the year ended December 31, \n2023, we incurred  $269 million  in accelerated\
    \ rent and accelerated depreciation . For additional information, \nsee Note 8\
    \  of the Notes to Consolidated Financial Statements included in Item 8 of this\
    \ Annual Report on \nForm 10-K.\n•In January 2023, we completed an assessment\
    \ of the useful lives of our servers and network equipment, \nresulting in a change\
    \ in the estimated useful life of our servers and certain network equipment to\
    \ six years. \nThe effect of this change was a reduction in depreciation expense\
    \ of $3.9 billion  for the year ended December \n31, 2023, recognized primarily\
    \ in cost of revenues and R&D expenses. For additional information, see Note 1\
    \  \nof the Notes to Consolidated Financial Statements included in Item 8 of this\
    \ Annual Report on Form 10-K.Table of Contents Alphabet Inc.\n34."
  sentences:
  - How does Google’s investment in AI research align with its long-term financial
    strategy and goals?
  - What role do market and industry factors play in the fluctuation of stock prices,
    regardless of a company's performance?
  - What was the total consolidated revenue for the year ended December 31, 2023,
    and how does it compare to the previous year?
- source_sentence: "Furthermore, failure to maintain and enhance our brands could\
    \ harm our business, reputation, financial condition, \nand operating results.\
    \ Our success will depend largely on our ability to remain a technology leader\
    \ and continue to \nprovide high-quality, trustworthy, innovative products and\
    \ services that are truly useful and play a valuable role in a \nrange of settings.\
    \ \nWe face a number of manufacturing and supply chain risks that could harm our\
    \ business, financial \ncondition, and operating results. \nWe face a number of\
    \ risks related to manufacturing and supply chain management, which could affect\
    \ our ability \nto supply both our products and our services. \nWe rely on contract\
    \ manufacturers to manufacture or assemble our device s and servers and networking\
    \ \nequipment used in our technical infrastructure, and we may supply the contract\
    \ manufacturers with components to \nassemble t he device s and equipment. We\
    \ also rely on other companies to participate in the  supply of components and\
    \  \ndistribution of our products and services. Our business could be negatively\
    \ affected if we are not able to engage these \ncompanies with the necessary capabilities\
    \ or capacity on reasonable terms, or if those we engage fail to meet their Table\
    \ of Contents Alphabet Inc.\n13."
  sentences:
  - Discuss the impact of annual stock-based compensation (SBC) awards on Alphabet
    Inc.'s financial reporting.
  - What financial risks does Google face if it fails to comply with the General Data
    Protection Regulation (GDPR)?
  - How does the ability to provide innovative products and services correlate with
    a company's revenue growth?
- source_sentence: "For example, in December 2023, a California jury delivered a verdict\
    \ in Epic Games v. Google  finding that Google \nviolated antitrust laws related\
    \ to Google Play's billing practices. The presiding judge will determine remedies\
    \ in 2024 \nand the range of potential remedies vary widely. We plan to appeal.\
    \ In addition, the U.S. Department of Justice, \nvarious U.S. states, and other\
    \ plaintiffs have filed several antitrust lawsuits about various aspects of our\
    \ business, \nincluding our advertising technologies and practices, the operation\
    \ and distribution of Google Search, and the \noperation and distribution of the\
    \ Android operating system and Play Store. Other regulatory agencies in the U.S.\
    \ and \naround the world, including competition enforcers, consumer protection\
    \ agencies, and data protection authorities, have \nchallenged and may continue\
    \ to challenge our business practices and compliance with laws and regulations.\
    \ We are \ncooperating with these investigations and defending litigation  or\
    \ appealing decisions where appropriate.  \nVarious laws, regulations, investigations,\
    \ enforcement lawsuits, and regulatory actions have  involved in the past , \n\
    and may in the future result in substantial fines and penalties, injunctive relief,\
    \ ongoing monitoring and auditing \nobligations, changes to our products and services,\
    \ alterations to our business models and operations , including \ndivestiture\
    \ , and collateral related civil litigation or other adverse consequences, all\
    \ of which could harm our business, \nreputation, financial condition, and operating\
    \ results. \nAny of these legal proceedings could result in legal costs, diversion\
    \ of management resources, negative publicity \nand other harms to our business.\
    \ Estimating liabilities for our pending proceedings is a complex, fact-specific\
    \ , and \nspeculative process that requires significant judgment, and the amounts\
    \ we are ultimately liable for may be less than or \nexceed our estimates. The\
    \ resolution of one or more such proceedings has resulted in, and may in the future\
    \ result in, \nadditional substantial fines, penalties, injunctions, and other\
    \ sanctions that could harm our business, reputation, \nfinancial condition, and\
    \ operating results. \nFor additional information about the ongoing material legal\
    \ proceedings to which we are subject, see Legal \nProceedings in Part I, Item\
    \ 3 of this Annual Report on Form 10-K.\nPrivacy, data protection, and data usage\
    \ regulations are complex and rapidly evolving areas. Any failure \nor alleged\
    \ failure to comply with these laws could harm our business, reputation, financial\
    \ condition, and \noperating results. \nAuthorities around the world have adopted\
    \ and are considering a number of legislative and regulatory proposals \nconcerning\
    \ data protection, data usage, and encryption of user data. Adverse legal rulings,\
    \ legislation, or regulation \nhave resulted in, and may continue to result in,\
    \ fines and orders requiring that we change our practices, which have \nhad and\
    \ could continue to have an adverse effect on how we provide services, harming\
    \ our business, reputation, \nfinancial condition, and operating results. These\
    \ laws and regulations are evolving and subject to interpretation, and \ncompliance\
    \ obligations could cause us to incur substantial costs or harm the quality and\
    \ operations of our products \nand services in ways that harm our business.  Examples\
    \ of these laws include : \n•The General Data Protection Regulation and the United\
    \ Kingdom General Data Protection Regulations, which \napply to all of our activities\
    \ conducted from an establishment in the EU or the United Kingdom, respectively,\
    \ or \nrelated to products and services that we offer to EU or the United Kingdom\
    \ users or customers, respectively, or \nthe monitoring of their behavior in the\
    \ EU or the UK, respectively.\n•Various comprehensive U.S. state and foreign privacy\
    \ laws, which give new data privacy rights to their \nrespective residents (including,\
    \ in California, a private right of action in the event of a data breach resulting\
    \ \nfrom our failure to implement and maintain reasonable security procedures\
    \ and practices) and impose \nsignificant obligations on controllers and processors\
    \ of consumer data.\n•State laws governing the processing of biometric information,\
    \ such as the Illinois Biometric Information Privacy \nAct and the Texas Capture\
    \ or Use of Biometric Identifier Act, which impose obligations on businesses that\
    \ \ncollect or disclose consumer biometric information. \n•Various federal, state,\
    \ and foreign laws governing how companies provide age appropriate experiences\
    \ to \nchildren and minors, including the collection and processing of children\
    \ and minor’s data. These include the \nChildren’s Online Privacy Protection Act\
    \ of 1998, and the United Kingdom Age-Appropriate Design Code, all of \nwhich\
    \ address the use and disclosure of the personal data of children and minors and\
    \ impose obligations on \nonline services or products directed to or likely to\
    \ be accessed by children. \n•The California Internet of Things Security Law,\
    \ which regulates the security of data used in connection with \ninternet-connected\
    \ devices."
  sentences:
  - What are the ethical challenges that may arise from the development of new AI
    products and services?
  - How might the California Internet of Things Security Law impose additional financial
    obligations on Google?
  - In the context of Google Services, what factors contribute to the competitive
    nature of the device market, and how might these factors affect financial outcomes?
- source_sentence: "obligations (whether due to financial difficulties or other reasons),\
    \ or make adverse changes in the pricing or other \nmaterial terms of our arrangements\
    \ with them. \nWe have experienced and/or may in the future experience supply\
    \ shortages, price increases, quality issues, and/\nor longer lead times that\
    \ could negatively affect our operations, driven by raw material, component availability,\
    \ \nmanufacturing capacity, labor shortages, industry allocations, logistics capacity,\
    \ inflation, foreign currency exchange \nrates, tariffs, sanctions and export\
    \ controls, trade disputes and barriers, forced labor concerns, sustainability\
    \ sourcing \nrequirements, geopolitical tensions, armed conflicts, natural disasters\
    \ or pandemics, the effects of climate change \n(such as sea level rise, drought,\
    \ flooding, heat waves, wildfires and resultant air quality effects and power\
    \ shutdowns  \nassociated with wildfire prevention, and increased storm severity),\
    \ power loss, and significant changes in the financial \nor business condition\
    \ of our suppliers. Some of the components we use in our technical infrastructure\
    \ and our device s \nare available from only one or limited sources, and we may\
    \ not be able to find replacement vendors on favorable terms \nin the event of\
    \ a supply chain disruption. A significant supply interruption that affects us\
    \ or our vendors could delay \ncritical data center upgrades or expansions and\
    \ delay consumer product availability . \nWe may enter into long-term contracts\
    \ for materials and products that commit us to significant terms and \nconditions.\
    \ We may face costs for materials and products that are not consumed due to market\
    \ demand, technological \nchange, changed consumer preferences, quality, product\
    \ recalls, and warranty issues. For instance, because certain of \nour hardware\
    \  supply contracts have volume-based pricing or minimum purchase requirements,\
    \ if the volume of sales \nof our devices decreases or does not reach projected\
    \ targets, we could face increased materials and manufacturing \ncosts or other\
    \ financial liabilities that could make our products more costly per unit to manufacture\
    \ and harm our \nfinancial condition and operating results. Furthermore, certain\
    \ of our competitors may negotiate more favorable \ncontractual terms based on\
    \ volume and other commitments that may provide them with competitive advantages\
    \ and \nmay affect our supply. \nOur device s have had, and in the future may\
    \ have, quality issues resulting from design, manufacturing, or \noperations.\
    \ Sometimes, these issues may be caused by components we purchase from other manufacturers\
    \ or \nsuppliers. If the quality of our products and services does not meet expectations\
    \ or our products or services are \ndefective or require a recall, it could harm\
    \ our reputation, financial condition, and operating results.  \nWe require our\
    \ suppliers and business partners to comply with laws and, where applicable, our\
    \ company policies \nand practices, such as the Google Supplier Code of Conduct,\
    \ regarding workplace and employment practices, data \nsecurity, environmental\
    \ compliance, and intellectual property licensing, but we do not control them\
    \ or their practices. \nViolations of law or unethical business practices could\
    \ result in supply chain disruptions, canceled orders, harm to key \nrelationships,\
    \ and damage to our reputation. Their failure to procure necessary license rights\
    \ to intellectual property \ncould affect our ability to sell our products or\
    \ services and expose us to litigation or financial claims. \nInterruption to,\
    \ interference with, or failure of our complex information technology and communications\
    \ \nsystems could hurt our ability to effectively provide our products and services,\
    \ which could harm  our \nreputation, financial condition, and operating results.\
    \ \nThe availability of our products and services and fulfillment of our customer\
    \ contracts depend on the continuing \noperation of our information technology\
    \ and communications systems. Our systems are vulnerable to damage, \ninterference,\
    \ or interruption from modifications or upgrades, terrorist attacks, state-sponsored\
    \ attacks, natural disasters \nor pandemics, geopolitical tensions or armed conflicts,\
    \ export controls and sanctions, the effects of climate change \n(such as sea\
    \ level rise, drought, flooding, heat waves, wildfires and resultant air quality\
    \ effects and power shutdowns  \nassociated with wildfire prevention, and increased\
    \ storm severity), power loss, utility outages, telecommunications \nfailures,\
    \ computer viruses, software bugs, ransomware attacks, supply-chain attacks, computer\
    \ denial of service \nattacks, phishing schemes, or other attempts to harm or\
    \ access our systems. Some of our data centers are located in \nareas with a high\
    \ risk of major earthquakes or other natural disasters. Our data centers are also\
    \ subject to break-ins, \nsabotage, and intentional acts of vandalism, and, in\
    \ some cases, to potential disruptions resulting from problems \nexperienced by\
    \ facility operators or disruptions as a result of geopolitical tensions and conflicts\
    \ happening in the area. \nSome of our systems are not fully redundant, and disaster\
    \ recovery planning cannot account for all eventualities. The \noccurrence of\
    \ a natural disaster or pandemic, closure of a facility, or other unanticipated\
    \ problems affecting our data \ncenters could result in lengthy interruptions\
    \ in our service."
  sentences:
  - What are the implications of increased logistics capacity costs on a company's
    overall financial performance?
  - What are the potential risks associated with the company's reliance on consumer
    subscription-based products for revenue?
  - How might legal proceedings and regulatory scrutiny affect a company's financial
    condition and operating results?
model-index:
- name: SUJET AI bge-base Finance Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.015384615384615385
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.04657342657342657
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.06993006993006994
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.13076923076923078
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.015384615384615385
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.015524475524475523
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.013986013986013986
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.013076923076923076
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.015384615384615385
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.04657342657342657
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.06993006993006994
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.13076923076923078
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.0620726064588503
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.04157842157842149
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.05757497178689022
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.014965034965034965
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.04531468531468531
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.06713286713286713
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.12755244755244755
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.014965034965034965
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.015104895104895105
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.013426573426573427
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.012755244755244756
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.014965034965034965
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.04531468531468531
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.06713286713286713
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.12755244755244755
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.06036389249600748
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.04032722832722825
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.05606060146944153
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.012167832167832168
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.04055944055944056
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.06265734265734266
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.11734265734265734
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.012167832167832168
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.013519813519813519
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.012531468531468533
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.011734265734265736
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.012167832167832168
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.04055944055944056
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.06265734265734266
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.11734265734265734
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.054805553416946595
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.03612859362859355
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.050715277611358314
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.01020979020979021
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.03538461538461538
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.05118881118881119
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.09734265734265735
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.01020979020979021
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.011794871794871797
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.01023776223776224
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.009734265734265736
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.01020979020979021
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.03538461538461538
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.05118881118881119
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.09734265734265735
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.045562900318375184
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.03009612609612603
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.04272564391942989
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.005874125874125874
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.02125874125874126
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.03370629370629371
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.06741258741258742
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.005874125874125874
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.007086247086247086
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.006741258741258742
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.006741258741258742
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.005874125874125874
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.02125874125874126
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.03370629370629371
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.06741258741258742
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.030435876859011154
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.01942596292596293
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.028981824813925826
      name: Cosine Map@100
---

# SUJET AI bge-base Finance Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Rubyando59/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'obligations (whether due to financial difficulties or other reasons), or make adverse changes in the pricing or other \nmaterial terms of our arrangements with them. \nWe have experienced and/or may in the future experience supply shortages, price increases, quality issues, and/\nor longer lead times that could negatively affect our operations, driven by raw material, component availability, \nmanufacturing capacity, labor shortages, industry allocations, logistics capacity, inflation, foreign currency exchange \nrates, tariffs, sanctions and export controls, trade disputes and barriers, forced labor concerns, sustainability sourcing \nrequirements, geopolitical tensions, armed conflicts, natural disasters or pandemics, the effects of climate change \n(such as sea level rise, drought, flooding, heat waves, wildfires and resultant air quality effects and power shutdowns  \nassociated with wildfire prevention, and increased storm severity), power loss, and significant changes in the financial \nor business condition of our suppliers. Some of the components we use in our technical infrastructure and our device s \nare available from only one or limited sources, and we may not be able to find replacement vendors on favorable terms \nin the event of a supply chain disruption. A significant supply interruption that affects us or our vendors could delay \ncritical data center upgrades or expansions and delay consumer product availability . \nWe may enter into long-term contracts for materials and products that commit us to significant terms and \nconditions. We may face costs for materials and products that are not consumed due to market demand, technological \nchange, changed consumer preferences, quality, product recalls, and warranty issues. For instance, because certain of \nour hardware  supply contracts have volume-based pricing or minimum purchase requirements, if the volume of sales \nof our devices decreases or does not reach projected targets, we could face increased materials and manufacturing \ncosts or other financial liabilities that could make our products more costly per unit to manufacture and harm our \nfinancial condition and operating results. Furthermore, certain of our competitors may negotiate more favorable \ncontractual terms based on volume and other commitments that may provide them with competitive advantages and \nmay affect our supply. \nOur device s have had, and in the future may have, quality issues resulting from design, manufacturing, or \noperations. Sometimes, these issues may be caused by components we purchase from other manufacturers or \nsuppliers. If the quality of our products and services does not meet expectations or our products or services are \ndefective or require a recall, it could harm our reputation, financial condition, and operating results.  \nWe require our suppliers and business partners to comply with laws and, where applicable, our company policies \nand practices, such as the Google Supplier Code of Conduct, regarding workplace and employment practices, data \nsecurity, environmental compliance, and intellectual property licensing, but we do not control them or their practices. \nViolations of law or unethical business practices could result in supply chain disruptions, canceled orders, harm to key \nrelationships, and damage to our reputation. Their failure to procure necessary license rights to intellectual property \ncould affect our ability to sell our products or services and expose us to litigation or financial claims. \nInterruption to, interference with, or failure of our complex information technology and communications \nsystems could hurt our ability to effectively provide our products and services, which could harm  our \nreputation, financial condition, and operating results. \nThe availability of our products and services and fulfillment of our customer contracts depend on the continuing \noperation of our information technology and communications systems. Our systems are vulnerable to damage, \ninterference, or interruption from modifications or upgrades, terrorist attacks, state-sponsored attacks, natural disasters \nor pandemics, geopolitical tensions or armed conflicts, export controls and sanctions, the effects of climate change \n(such as sea level rise, drought, flooding, heat waves, wildfires and resultant air quality effects and power shutdowns  \nassociated with wildfire prevention, and increased storm severity), power loss, utility outages, telecommunications \nfailures, computer viruses, software bugs, ransomware attacks, supply-chain attacks, computer denial of service \nattacks, phishing schemes, or other attempts to harm or access our systems. Some of our data centers are located in \nareas with a high risk of major earthquakes or other natural disasters. Our data centers are also subject to break-ins, \nsabotage, and intentional acts of vandalism, and, in some cases, to potential disruptions resulting from problems \nexperienced by facility operators or disruptions as a result of geopolitical tensions and conflicts happening in the area. \nSome of our systems are not fully redundant, and disaster recovery planning cannot account for all eventualities. The \noccurrence of a natural disaster or pandemic, closure of a facility, or other unanticipated problems affecting our data \ncenters could result in lengthy interruptions in our service.',
    "What are the implications of increased logistics capacity costs on a company's overall financial performance?",
    "How might legal proceedings and regulatory scrutiny affect a company's financial condition and operating results?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0154     |
| cosine_accuracy@3   | 0.0466     |
| cosine_accuracy@5   | 0.0699     |
| cosine_accuracy@10  | 0.1308     |
| cosine_precision@1  | 0.0154     |
| cosine_precision@3  | 0.0155     |
| cosine_precision@5  | 0.014      |
| cosine_precision@10 | 0.0131     |
| cosine_recall@1     | 0.0154     |
| cosine_recall@3     | 0.0466     |
| cosine_recall@5     | 0.0699     |
| cosine_recall@10    | 0.1308     |
| cosine_ndcg@10      | 0.0621     |
| cosine_mrr@10       | 0.0416     |
| **cosine_map@100**  | **0.0576** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.015      |
| cosine_accuracy@3   | 0.0453     |
| cosine_accuracy@5   | 0.0671     |
| cosine_accuracy@10  | 0.1276     |
| cosine_precision@1  | 0.015      |
| cosine_precision@3  | 0.0151     |
| cosine_precision@5  | 0.0134     |
| cosine_precision@10 | 0.0128     |
| cosine_recall@1     | 0.015      |
| cosine_recall@3     | 0.0453     |
| cosine_recall@5     | 0.0671     |
| cosine_recall@10    | 0.1276     |
| cosine_ndcg@10      | 0.0604     |
| cosine_mrr@10       | 0.0403     |
| **cosine_map@100**  | **0.0561** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0122     |
| cosine_accuracy@3   | 0.0406     |
| cosine_accuracy@5   | 0.0627     |
| cosine_accuracy@10  | 0.1173     |
| cosine_precision@1  | 0.0122     |
| cosine_precision@3  | 0.0135     |
| cosine_precision@5  | 0.0125     |
| cosine_precision@10 | 0.0117     |
| cosine_recall@1     | 0.0122     |
| cosine_recall@3     | 0.0406     |
| cosine_recall@5     | 0.0627     |
| cosine_recall@10    | 0.1173     |
| cosine_ndcg@10      | 0.0548     |
| cosine_mrr@10       | 0.0361     |
| **cosine_map@100**  | **0.0507** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0102     |
| cosine_accuracy@3   | 0.0354     |
| cosine_accuracy@5   | 0.0512     |
| cosine_accuracy@10  | 0.0973     |
| cosine_precision@1  | 0.0102     |
| cosine_precision@3  | 0.0118     |
| cosine_precision@5  | 0.0102     |
| cosine_precision@10 | 0.0097     |
| cosine_recall@1     | 0.0102     |
| cosine_recall@3     | 0.0354     |
| cosine_recall@5     | 0.0512     |
| cosine_recall@10    | 0.0973     |
| cosine_ndcg@10      | 0.0456     |
| cosine_mrr@10       | 0.0301     |
| **cosine_map@100**  | **0.0427** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.0059    |
| cosine_accuracy@3   | 0.0213    |
| cosine_accuracy@5   | 0.0337    |
| cosine_accuracy@10  | 0.0674    |
| cosine_precision@1  | 0.0059    |
| cosine_precision@3  | 0.0071    |
| cosine_precision@5  | 0.0067    |
| cosine_precision@10 | 0.0067    |
| cosine_recall@1     | 0.0059    |
| cosine_recall@3     | 0.0213    |
| cosine_recall@5     | 0.0337    |
| cosine_recall@10    | 0.0674    |
| cosine_ndcg@10      | 0.0304    |
| cosine_mrr@10       | 0.0194    |
| **cosine_map@100**  | **0.029** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch      | Step    | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.0516     | 10      | 6.6963        | -                      | -                      | -                      | -                     | -                      |
| 0.1033     | 20      | 7.634         | -                      | -                      | -                      | -                     | -                      |
| 0.1549     | 30      | 6.8573        | -                      | -                      | -                      | -                     | -                      |
| 0.2065     | 40      | 8.1731        | -                      | -                      | -                      | -                     | -                      |
| 0.2581     | 50      | 7.2853        | -                      | -                      | -                      | -                     | -                      |
| 0.3098     | 60      | 7.6009        | -                      | -                      | -                      | -                     | -                      |
| 0.3614     | 70      | 9.0776        | -                      | -                      | -                      | -                     | -                      |
| 0.4130     | 80      | 7.8738        | -                      | -                      | -                      | -                     | -                      |
| 0.4647     | 90      | 10.46         | -                      | -                      | -                      | -                     | -                      |
| 0.5163     | 100     | 10.7396       | -                      | -                      | -                      | -                     | -                      |
| 0.5679     | 110     | 10.3513       | -                      | -                      | -                      | -                     | -                      |
| 0.6196     | 120     | 10.654        | -                      | -                      | -                      | -                     | -                      |
| 0.6712     | 130     | 12.6157       | -                      | -                      | -                      | -                     | -                      |
| 0.7228     | 140     | 11.955        | -                      | -                      | -                      | -                     | -                      |
| 0.7744     | 150     | 13.2498       | -                      | -                      | -                      | -                     | -                      |
| 0.8261     | 160     | 11.2981       | -                      | -                      | -                      | -                     | -                      |
| 0.8777     | 170     | 13.8403       | -                      | -                      | -                      | -                     | -                      |
| 0.9293     | 180     | 9.4428        | -                      | -                      | -                      | -                     | -                      |
| 0.9810     | 190     | 8.1768        | -                      | -                      | -                      | -                     | -                      |
| **1.0016** | **194** | **-**         | **0.0427**             | **0.0507**             | **0.0561**             | **0.029**             | **0.0576**             |
| 1.0303     | 200     | 7.0981        | -                      | -                      | -                      | -                     | -                      |
| 1.0820     | 210     | 7.3113        | -                      | -                      | -                      | -                     | -                      |
| 1.1336     | 220     | 7.0259        | -                      | -                      | -                      | -                     | -                      |
| 1.1852     | 230     | 7.5874        | -                      | -                      | -                      | -                     | -                      |
| 1.2369     | 240     | 7.65          | -                      | -                      | -                      | -                     | -                      |
| 1.2885     | 250     | 7.2387        | -                      | -                      | -                      | -                     | -                      |
| 1.3401     | 260     | 9.001         | -                      | -                      | -                      | -                     | -                      |
| 1.3917     | 270     | 7.5975        | -                      | -                      | -                      | -                     | -                      |
| 1.4434     | 280     | 9.9568        | -                      | -                      | -                      | -                     | -                      |
| 1.4950     | 290     | 10.4123       | -                      | -                      | -                      | -                     | -                      |
| 1.5466     | 300     | 10.5535       | -                      | -                      | -                      | -                     | -                      |
| 1.5983     | 310     | 9.8199        | -                      | -                      | -                      | -                     | -                      |
| 1.6499     | 320     | 12.7258       | -                      | -                      | -                      | -                     | -                      |
| 1.7015     | 330     | 11.9423       | -                      | -                      | -                      | -                     | -                      |
| 1.7531     | 340     | 12.7364       | -                      | -                      | -                      | -                     | -                      |
| 1.8048     | 350     | 12.1926       | -                      | -                      | -                      | -                     | -                      |
| 1.8564     | 360     | 12.926        | -                      | -                      | -                      | -                     | -                      |
| 1.9080     | 370     | 11.8007       | -                      | -                      | -                      | -                     | -                      |
| 1.9597     | 380     | 8.7379        | -                      | -                      | -                      | -                     | -                      |
| 2.0010     | 388     | -             | 0.0427                 | 0.0507                 | 0.0561                 | 0.0290                | 0.0576                 |
| 2.0090     | 390     | 7.1936        | -                      | -                      | -                      | -                     | -                      |
| 2.0607     | 400     | 6.7359        | -                      | -                      | -                      | -                     | -                      |
| 2.1123     | 410     | 7.4212        | -                      | -                      | -                      | -                     | -                      |
| 2.1639     | 420     | 7.346         | -                      | -                      | -                      | -                     | -                      |
| 2.2156     | 430     | 7.6784        | -                      | -                      | -                      | -                     | -                      |
| 2.2672     | 440     | 7.5079        | -                      | -                      | -                      | -                     | -                      |
| 2.3188     | 450     | 7.8875        | -                      | -                      | -                      | -                     | -                      |
| 2.3704     | 460     | 8.7154        | -                      | -                      | -                      | -                     | -                      |
| 2.4221     | 470     | 8.1278        | -                      | -                      | -                      | -                     | -                      |
| 2.4737     | 480     | 11.1214       | -                      | -                      | -                      | -                     | -                      |
| 2.5253     | 490     | 10.5293       | -                      | -                      | -                      | -                     | -                      |
| 2.5770     | 500     | 9.9882        | -                      | -                      | -                      | -                     | -                      |
| 2.6286     | 510     | 11.5283       | -                      | -                      | -                      | -                     | -                      |
| 2.6802     | 520     | 12.4337       | -                      | -                      | -                      | -                     | -                      |
| 2.7318     | 530     | 11.641        | -                      | -                      | -                      | -                     | -                      |
| 2.7835     | 540     | 13.3482       | -                      | -                      | -                      | -                     | -                      |
| 2.8351     | 550     | 11.7302       | -                      | -                      | -                      | -                     | -                      |
| 2.8867     | 560     | 13.7171       | -                      | -                      | -                      | -                     | -                      |
| 2.9384     | 570     | 8.9323        | -                      | -                      | -                      | -                     | -                      |
| 2.9900     | 580     | 7.4869        | -                      | -                      | -                      | -                     | -                      |
| 3.0003     | 582     | -             | 0.0427                 | 0.0507                 | 0.0561                 | 0.0290                | 0.0576                 |
| 3.0394     | 590     | 6.9978        | -                      | -                      | -                      | -                     | -                      |
| 3.0910     | 600     | 7.33          | -                      | -                      | -                      | -                     | -                      |
| 3.1426     | 610     | 7.1879        | -                      | -                      | -                      | -                     | -                      |
| 3.1943     | 620     | 7.9204        | -                      | -                      | -                      | -                     | -                      |
| 3.2459     | 630     | 7.4435        | -                      | -                      | -                      | -                     | -                      |
| 3.2975     | 640     | 7.4079        | -                      | -                      | -                      | -                     | -                      |
| 3.3491     | 650     | 9.2445        | -                      | -                      | -                      | -                     | -                      |
| 3.4008     | 660     | 7.1794        | -                      | -                      | -                      | -                     | -                      |
| 3.4524     | 670     | 10.4496       | -                      | -                      | -                      | -                     | -                      |
| 3.5040     | 680     | 10.7556       | -                      | -                      | -                      | -                     | -                      |
| 3.5557     | 690     | 10.3543       | -                      | -                      | -                      | -                     | -                      |
| 3.6073     | 700     | 9.9478        | -                      | -                      | -                      | -                     | -                      |
| 3.6589     | 710     | 12.6559       | -                      | -                      | -                      | -                     | -                      |
| 3.7106     | 720     | 12.2463       | -                      | -                      | -                      | -                     | -                      |
| 3.7622     | 730     | 12.8381       | -                      | -                      | -                      | -                     | -                      |
| 3.8138     | 740     | 11.726        | -                      | -                      | -                      | -                     | -                      |
| 3.8654     | 750     | 13.4883       | -                      | -                      | -                      | -                     | -                      |
| 3.9171     | 760     | 10.7751       | -                      | -                      | -                      | -                     | -                      |
| 3.9687     | 770     | 8.5484        | -                      | -                      | -                      | -                     | -                      |
| 3.9997     | 776     | -             | 0.0427                 | 0.0507                 | 0.0561                 | 0.0290                | 0.0576                 |
| 4.0181     | 780     | 7.1582        | -                      | -                      | -                      | -                     | -                      |
| 4.0697     | 790     | 7.0161        | -                      | -                      | -                      | -                     | -                      |
| 4.1213     | 800     | 7.11          | -                      | -                      | -                      | -                     | -                      |
| 4.1730     | 810     | 7.4557        | -                      | -                      | -                      | -                     | -                      |
| 4.2246     | 820     | 7.723         | -                      | -                      | -                      | -                     | -                      |
| 4.2762     | 830     | 7.2889        | -                      | -                      | -                      | -                     | -                      |
| 4.3278     | 840     | 8.3884        | -                      | -                      | -                      | -                     | -                      |
| 4.3795     | 850     | 8.1581        | -                      | -                      | -                      | -                     | -                      |
| 4.4311     | 860     | 9.1386        | -                      | -                      | -                      | -                     | -                      |
| 4.4827     | 870     | 10.706        | -                      | -                      | -                      | -                     | -                      |
| 4.5344     | 880     | 10.4258       | -                      | -                      | -                      | -                     | -                      |
| 4.5860     | 890     | 9.9659        | -                      | -                      | -                      | -                     | -                      |
| 4.6376     | 900     | 11.8535       | -                      | -                      | -                      | -                     | -                      |
| 4.6893     | 910     | 12.5578       | -                      | -                      | -                      | -                     | -                      |
| 4.7409     | 920     | 11.834        | -                      | -                      | -                      | -                     | -                      |
| 4.7925     | 930     | 12.5328       | -                      | -                      | -                      | -                     | -                      |
| 4.8441     | 940     | 12.6998       | -                      | -                      | -                      | -                     | -                      |
| 4.8958     | 950     | 12.9728       | -                      | -                      | -                      | -                     | -                      |
| 4.9474     | 960     | 8.9204        | -                      | -                      | -                      | -                     | -                      |
| 4.9990     | 970     | 7.3909        | 0.0427                 | 0.0507                 | 0.0561                 | 0.0290                | 0.0576                 |
| 5.0484     | 980     | 6.6683        | -                      | -                      | -                      | -                     | -                      |
| 5.1000     | 990     | 7.5538        | -                      | -                      | -                      | -                     | -                      |
| 5.1517     | 1000    | 6.9256        | -                      | -                      | -                      | -                     | -                      |
| 5.2033     | 1010    | 8.0908        | -                      | -                      | -                      | -                     | -                      |
| 5.2549     | 1020    | 7.254         | -                      | -                      | -                      | -                     | -                      |
| 5.3066     | 1030    | 7.6558        | -                      | -                      | -                      | -                     | -                      |
| 5.3582     | 1040    | 9.2184        | -                      | -                      | -                      | -                     | -                      |
| 5.4098     | 1050    | 7.5886        | -                      | -                      | -                      | -                     | -                      |
| 5.4614     | 1060    | 10.4976       | -                      | -                      | -                      | -                     | -                      |
| 5.5131     | 1070    | 10.785        | -                      | -                      | -                      | -                     | -                      |
| 5.5647     | 1080    | 10.2376       | -                      | -                      | -                      | -                     | -                      |
| 5.6163     | 1090    | 10.4871       | -                      | -                      | -                      | -                     | -                      |
| 5.6680     | 1100    | 12.6986       | -                      | -                      | -                      | -                     | -                      |
| 5.7196     | 1110    | 12.0688       | -                      | -                      | -                      | -                     | -                      |
| 5.7712     | 1120    | 13.1161       | -                      | -                      | -                      | -                     | -                      |
| 5.8228     | 1130    | 11.3866       | -                      | -                      | -                      | -                     | -                      |
| 5.8745     | 1140    | 13.7281       | -                      | -                      | -                      | -                     | -                      |
| 5.9261     | 1150    | 9.8432        | -                      | -                      | -                      | -                     | -                      |
| 5.9777     | 1160    | 8.2606        | -                      | -                      | -                      | -                     | -                      |
| 5.9984     | 1164    | -             | 0.0427                 | 0.0507                 | 0.0561                 | 0.0290                | 0.0576                 |
| 6.0271     | 1170    | 7.0799        | -                      | -                      | -                      | -                     | -                      |
| 6.0787     | 1180    | 7.2981        | -                      | -                      | -                      | -                     | -                      |
| 6.1304     | 1190    | 7.0085        | -                      | -                      | -                      | -                     | -                      |
| 6.1820     | 1200    | 7.4587        | -                      | -                      | -                      | -                     | -                      |
| 6.2336     | 1210    | 7.8467        | -                      | -                      | -                      | -                     | -                      |
| 6.2853     | 1220    | 7.2008        | -                      | -                      | -                      | -                     | -                      |
| 6.3369     | 1230    | 8.8152        | -                      | -                      | -                      | -                     | -                      |
| 6.3885     | 1240    | 7.7205        | -                      | -                      | -                      | -                     | -                      |
| 6.4401     | 1250    | 9.9131        | -                      | -                      | -                      | -                     | -                      |
| 6.4918     | 1260    | 10.212        | -                      | -                      | -                      | -                     | -                      |
| 6.5434     | 1270    | 10.6791       | -                      | -                      | -                      | -                     | -                      |
| 6.5950     | 1280    | 9.8454        | -                      | -                      | -                      | -                     | -                      |
| 6.6467     | 1290    | 12.4647       | -                      | -                      | -                      | -                     | -                      |
| 6.6983     | 1300    | 11.8962       | -                      | -                      | -                      | -                     | -                      |
| 6.7499     | 1310    | 12.8014       | -                      | -                      | -                      | -                     | -                      |
| 6.8015     | 1320    | 12.1836       | -                      | -                      | -                      | -                     | -                      |
| 6.8532     | 1330    | 12.9114       | -                      | -                      | -                      | -                     | -                      |
| 6.9048     | 1340    | 12.1711       | -                      | -                      | -                      | -                     | -                      |
| 6.9564     | 1350    | 8.8125        | -                      | -                      | -                      | -                     | -                      |
| 6.9977     | 1358    | -             | 0.0427                 | 0.0507                 | 0.0561                 | 0.0290                | 0.0576                 |
| 7.0058     | 1360    | 7.2281        | -                      | -                      | -                      | -                     | -                      |
| 7.0574     | 1370    | 6.6681        | -                      | -                      | -                      | -                     | -                      |
| 7.1091     | 1380    | 7.5282        | -                      | -                      | -                      | -                     | -                      |
| 7.1607     | 1390    | 7.1585        | -                      | -                      | -                      | -                     | -                      |
| 7.2123     | 1400    | 7.8507        | -                      | -                      | -                      | -                     | -                      |
| 7.2640     | 1410    | 7.4737        | -                      | -                      | -                      | -                     | -                      |
| 7.3156     | 1420    | 7.6963        | -                      | -                      | -                      | -                     | -                      |
| 7.3672     | 1430    | 8.8799        | -                      | -                      | -                      | -                     | -                      |
| 7.4188     | 1440    | 7.9977        | -                      | -                      | -                      | -                     | -                      |
| 7.4705     | 1450    | 10.9078       | -                      | -                      | -                      | -                     | -                      |
| 7.5221     | 1460    | 10.5731       | -                      | -                      | -                      | -                     | -                      |
| 7.5737     | 1470    | 10.1121       | -                      | -                      | -                      | -                     | -                      |
| 7.6254     | 1480    | 11.2426       | -                      | -                      | -                      | -                     | -                      |
| 7.6770     | 1490    | 12.4832       | -                      | -                      | -                      | -                     | -                      |
| 7.7286     | 1500    | 11.6954       | -                      | -                      | -                      | -                     | -                      |
| 7.7803     | 1510    | 13.4836       | -                      | -                      | -                      | -                     | -                      |
| 7.8319     | 1520    | 11.4752       | -                      | -                      | -                      | -                     | -                      |
| 7.8835     | 1530    | 13.8097       | -                      | -                      | -                      | -                     | -                      |
| 7.9351     | 1540    | 9.0087        | -                      | -                      | -                      | -                     | -                      |
| 7.9868     | 1550    | 7.709         | -                      | -                      | -                      | -                     | -                      |
| 8.0023     | 1553    | -             | 0.0427                 | 0.0507                 | 0.0561                 | 0.0290                | 0.0576                 |
| 8.0361     | 1560    | 7.1515        | -                      | -                      | -                      | -                     | -                      |
| 8.0878     | 1570    | 7.2816        | -                      | -                      | -                      | -                     | -                      |
| 8.1394     | 1580    | 7.1392        | -                      | -                      | -                      | -                     | -                      |
| 8.1910     | 1590    | 7.7863        | -                      | -                      | -                      | -                     | -                      |
| 8.2427     | 1600    | 7.4939        | -                      | -                      | -                      | -                     | -                      |
| 8.2943     | 1610    | 7.3074        | -                      | -                      | -                      | -                     | -                      |
| 8.3459     | 1620    | 9.1739        | -                      | -                      | -                      | -                     | -                      |
| 8.3975     | 1630    | 7.3667        | -                      | -                      | -                      | -                     | -                      |
| 8.4492     | 1640    | 10.2528       | -                      | -                      | -                      | -                     | -                      |
| 8.5008     | 1650    | 10.6824       | -                      | -                      | -                      | -                     | -                      |
| 8.5524     | 1660    | 10.3765       | -                      | -                      | -                      | -                     | -                      |
| 8.6041     | 1670    | 9.853         | -                      | -                      | -                      | -                     | -                      |
| 8.6557     | 1680    | 12.8624       | -                      | -                      | -                      | -                     | -                      |
| 8.7073     | 1690    | 12.0849       | -                      | -                      | -                      | -                     | -                      |
| 8.7590     | 1700    | 12.7345       | -                      | -                      | -                      | -                     | -                      |
| 8.8106     | 1710    | 11.9884       | -                      | -                      | -                      | -                     | -                      |
| 8.8622     | 1720    | 13.2117       | -                      | -                      | -                      | -                     | -                      |
| 8.9138     | 1730    | 11.1261       | -                      | -                      | -                      | -                     | -                      |
| 8.9655     | 1740    | 8.5941        | -                      | -                      | -                      | -                     | -                      |
| 9.0016     | 1747    | -             | 0.0427                 | 0.0507                 | 0.0561                 | 0.0290                | 0.0576                 |
| 9.0148     | 1750    | 7.2587        | -                      | -                      | -                      | -                     | -                      |
| 9.0665     | 1760    | 6.8577        | -                      | -                      | -                      | -                     | -                      |
| 9.1181     | 1770    | 7.2256        | -                      | -                      | -                      | -                     | -                      |
| 9.1697     | 1780    | 7.456         | -                      | -                      | -                      | -                     | -                      |
| 9.2214     | 1790    | 7.6563        | -                      | -                      | -                      | -                     | -                      |
| 9.2730     | 1800    | 7.3877        | -                      | -                      | -                      | -                     | -                      |
| 9.3246     | 1810    | 8.2009        | -                      | -                      | -                      | -                     | -                      |
| 9.3763     | 1820    | 8.5318        | -                      | -                      | -                      | -                     | -                      |
| 9.4279     | 1830    | 8.5052        | -                      | -                      | -                      | -                     | -                      |
| 9.4795     | 1840    | 10.9953       | -                      | -                      | -                      | -                     | -                      |
| 9.5311     | 1850    | 10.4012       | -                      | -                      | -                      | -                     | -                      |
| 9.5828     | 1860    | 10.0235       | -                      | -                      | -                      | -                     | -                      |
| 9.6344     | 1870    | 11.9031       | -                      | -                      | -                      | -                     | -                      |
| 9.6860     | 1880    | 12.5293       | -                      | -                      | -                      | -                     | -                      |
| 9.7377     | 1890    | 11.5157       | -                      | -                      | -                      | -                     | -                      |
| 9.7893     | 1900    | 12.8049       | -                      | -                      | -                      | -                     | -                      |
| 9.8409     | 1910    | 12.4659       | -                      | -                      | -                      | -                     | -                      |
| 9.8925     | 1920    | 13.1517       | -                      | -                      | -                      | -                     | -                      |
| 9.9442     | 1930    | 9.0604        | 0.0427                 | 0.0507                 | 0.0561                 | 0.0290                | 0.0576                 |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.5.0.dev20240704+cu124
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->