quality-lr5e-06-rr0.1-epochs2-bs16-wd0.01-warmup0.05-Llama3.21B
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.4583
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 3
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3438 | 0.1000 | 1372 | 2.4412 |
1.3308 | 0.2001 | 2744 | 2.4745 |
1.1389 | 0.3001 | 4116 | 2.4700 |
1.0742 | 0.4001 | 5488 | 2.4735 |
1.2025 | 0.5002 | 6860 | 2.4791 |
0.9616 | 0.6002 | 8232 | 2.4880 |
1.0427 | 0.7002 | 9604 | 2.4838 |
1.021 | 0.8003 | 10976 | 2.4824 |
0.9657 | 0.9003 | 12348 | 2.4816 |
0.9601 | 1.0003 | 13720 | 2.4775 |
0.9308 | 1.1004 | 15092 | 2.4743 |
0.9075 | 1.2004 | 16464 | 2.4721 |
0.9257 | 1.3004 | 17836 | 2.4684 |
0.9466 | 1.4005 | 19208 | 2.4655 |
1.9584 | 1.5005 | 20580 | 2.4628 |
0.8827 | 1.6005 | 21952 | 2.4609 |
0.9602 | 1.7006 | 23324 | 2.4596 |
0.9366 | 1.8006 | 24696 | 2.4587 |
0.87 | 1.9006 | 26068 | 2.4583 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.3.1+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 8
Model tree for Runjin/quality-lr5e-06-rr0.1-epochs2-bs16-wd0.01-warmup0.05-Llama3.21B
Base model
meta-llama/Llama-3.2-1B