SpatialBot is a VLM with spatial understanding and reasoning abilties, by precisely understanding depth maps and using them to do high-level tasks.
In this HF repo, we provide the merged SpatialBot-3B, which is based on Phi-2 and SigLIP. It can perform well on general VLM tasks and spatial understanding benchmarks like SpatialBench.
How to use SpatialBot-3B
NOTE: We update the repo and quick start codes in 28 August, 2024. Please update your model and codes if you downloaded them before this date.
- Install dependencies first:
pip install torch transformers accelerate pillow numpy
- Run the model:
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
import numpy as np
# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
# set device
device = 'cuda' # or cpu
model_name = 'RussRobin/SpatialBot-3B'
offset_bos = 0
# create model
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # float32 for cpu
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True)
# text prompt
prompt = 'What is the depth value of point <0.5,0.2>? Answer directly from depth map.'
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image 1>\n<image 2>\n{prompt} ASSISTANT:"
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image 1>\n<image 2>\n')]
input_ids = torch.tensor(text_chunks[0] + [-201] + [-202] + text_chunks[1][offset_bos:], dtype=torch.long).unsqueeze(0).to(device)
image1 = Image.open('rgb.jpg')
image2 = Image.open('depth.png')
channels = len(image2.getbands())
if channels == 1:
img = np.array(image2)
height, width = img.shape
three_channel_array = np.zeros((height, width, 3), dtype=np.uint8)
three_channel_array[:, :, 0] = (img // 1024) * 4
three_channel_array[:, :, 1] = (img // 32) * 8
three_channel_array[:, :, 2] = (img % 32) * 8
image2 = Image.fromarray(three_channel_array, 'RGB')
image_tensor = model.process_images([image1,image2], model.config).to(dtype=model.dtype, device=device)
# generate
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=100,
use_cache=True,
repetition_penalty=1.0 # increase this to avoid chattering
)[0]
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
Paper:
https://arxiv.org/abs/2406.13642
GitHub repo:
https://github.com/BAAI-DCAI/SpatialBot
SpatialBench, the benchmark:
https://huggingface.co/datasets/RussRobin/SpatialBench
CKPTs for SpatialBot-3B with LoRA:
- Downloads last month
- 120
Inference API (serverless) does not yet support model repos that contain custom code.