Edit model card

poolformer_s12-finetuned-IDRiD

This model is a fine-tuned version of sail/poolformer_s12 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0484
  • Accuracy: 0.4762

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 3 1.6953 0.0238
No log 2.0 6 1.6010 0.3333
No log 3.0 9 1.5131 0.2857
1.5842 4.0 12 1.4584 0.3810
1.5842 5.0 15 1.4097 0.4286
1.5842 6.0 18 1.3579 0.4524
1.2645 7.0 21 1.3034 0.4762
1.2645 8.0 24 1.2696 0.4762
1.2645 9.0 27 1.2298 0.4524
1.1011 10.0 30 1.2088 0.4762
1.1011 11.0 33 1.1945 0.4048
1.1011 12.0 36 1.1898 0.4524
1.1011 13.0 39 1.1668 0.4524
1.0024 14.0 42 1.1484 0.4286
1.0024 15.0 45 1.1374 0.4524
1.0024 16.0 48 1.1289 0.4524
0.9111 17.0 51 1.1166 0.4524
0.9111 18.0 54 1.1081 0.4286
0.9111 19.0 57 1.1011 0.4048
0.876 20.0 60 1.1005 0.4286
0.876 21.0 63 1.0999 0.4524
0.876 22.0 66 1.0933 0.4524
0.876 23.0 69 1.0714 0.4762
0.8375 24.0 72 1.0551 0.4762
0.8375 25.0 75 1.0427 0.4762
0.8375 26.0 78 1.0386 0.4762
0.8085 27.0 81 1.0413 0.4524
0.8085 28.0 84 1.0462 0.4762
0.8085 29.0 87 1.0480 0.4762
0.8125 30.0 90 1.0484 0.4762

Framework versions

  • Transformers 4.30.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.13.3
Downloads last month
140
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.