SetFit
This is a SetFit model that can be used for Text Classification. A SVC instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a SVC instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("SOUMYADEEPSAR/Setfit_random_sample_svm_head")
# Run inference
preds = model("What could possibly go wrong?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 23.4159 | 68 |
Label | Training Sample Count |
---|---|
0 | 136 |
1 | 78 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.3597 | - |
0.0161 | 50 | 0.2693 | - |
0.0323 | 100 | 0.2501 | - |
0.0484 | 150 | 0.2691 | - |
0.0645 | 200 | 0.063 | - |
0.0806 | 250 | 0.0179 | - |
0.0968 | 300 | 0.0044 | - |
0.1129 | 350 | 0.0003 | - |
0.1290 | 400 | 0.0005 | - |
0.1452 | 450 | 0.0002 | - |
0.1613 | 500 | 0.0003 | - |
0.1774 | 550 | 0.0001 | - |
0.1935 | 600 | 0.0001 | - |
0.2097 | 650 | 0.0001 | - |
0.2258 | 700 | 0.0001 | - |
0.2419 | 750 | 0.0001 | - |
0.2581 | 800 | 0.0 | - |
0.2742 | 850 | 0.0001 | - |
0.2903 | 900 | 0.0002 | - |
0.3065 | 950 | 0.0 | - |
0.3226 | 1000 | 0.0 | - |
0.3387 | 1050 | 0.0002 | - |
0.3548 | 1100 | 0.0 | - |
0.3710 | 1150 | 0.0001 | - |
0.3871 | 1200 | 0.0001 | - |
0.4032 | 1250 | 0.0 | - |
0.4194 | 1300 | 0.0 | - |
0.4355 | 1350 | 0.0 | - |
0.4516 | 1400 | 0.0001 | - |
0.4677 | 1450 | 0.0 | - |
0.4839 | 1500 | 0.0 | - |
0.5 | 1550 | 0.0001 | - |
0.5161 | 1600 | 0.0001 | - |
0.5323 | 1650 | 0.0 | - |
0.5484 | 1700 | 0.0 | - |
0.5645 | 1750 | 0.0 | - |
0.5806 | 1800 | 0.0 | - |
0.5968 | 1850 | 0.0 | - |
0.6129 | 1900 | 0.0 | - |
0.6290 | 1950 | 0.0001 | - |
0.6452 | 2000 | 0.0 | - |
0.6613 | 2050 | 0.0 | - |
0.6774 | 2100 | 0.0 | - |
0.6935 | 2150 | 0.0001 | - |
0.7097 | 2200 | 0.0 | - |
0.7258 | 2250 | 0.0 | - |
0.7419 | 2300 | 0.0001 | - |
0.7581 | 2350 | 0.0001 | - |
0.7742 | 2400 | 0.0001 | - |
0.7903 | 2450 | 0.0 | - |
0.8065 | 2500 | 0.0 | - |
0.8226 | 2550 | 0.0 | - |
0.8387 | 2600 | 0.0 | - |
0.8548 | 2650 | 0.0001 | - |
0.8710 | 2700 | 0.0001 | - |
0.8871 | 2750 | 0.0 | - |
0.9032 | 2800 | 0.0 | - |
0.9194 | 2850 | 0.0 | - |
0.9355 | 2900 | 0.0001 | - |
0.9516 | 2950 | 0.0 | - |
0.9677 | 3000 | 0.0001 | - |
0.9839 | 3050 | 0.0 | - |
1.0 | 3100 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.