Sagicc's picture
Update README.md
7e3d494 verified
metadata
library_name: transformers
language:
  - sr
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - espnet/yodas
metrics:
  - wer
model-index:
  - name: Whisper Large v3 Turbo Sr Test
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Yodas
          type: espnet/yodas
          config: sr
          split: None
          args: sr
        metrics:
          - name: Wer
            type: wer
            value: 0.1377668019050979

Whisper Large v3 Turbo Sr Test

This model is in test phase DO NOT USE IT ... YET

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Yodas dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1195
  • Wer: 0.1378

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6455 0.2439 500 0.1869 0.1928
0.5858 0.4878 1000 0.1694 0.1870
0.5608 0.7317 1500 0.1507 0.1641
0.4547 0.9756 2000 0.1388 0.1542
0.3905 1.2195 2500 0.1341 0.1461
0.3857 1.4634 3000 0.1291 0.1450
0.3656 1.7073 3500 0.1243 0.1415
0.3369 1.9512 4000 0.1195 0.1378

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.20.3