metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
- code
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-300m-hi-kagglex
results: []
datasets:
- mozilla-foundation/common_voice_15_0
- mozilla-foundation/common_voice_13_0
language:
- hi
library_name: transformers
pipeline_tag: automatic-speech-recognition
datasets:
- mozilla-foundation/common_voice_15_0
- mozilla-foundation/common_voice_13_0 language:
- hi metrics:
- cer
- wer
library_name: transformers
pipeline_tag: automatic-speech-recognition
model-index:
- name: whisper-small-hi-cv
results:
task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 15 type: mozilla-foundation/common_voice_15_0 args: hi metrics:
- name: Test WER type: wer value: 13.9913
- name: Test CER type: cer value: 5.8844
task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 args: hi metrics:
- name: Test WER type: wer value: 23.3824
- name: Test CER type: cer value: 10.5288
- name: whisper-small-hi-cv
results:
Model Details
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on this dataset . It achieves the following results on the evaluation set:
- Loss: 0.3691
- Wer: 0.3285
- Cer: 0.0875
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
7.314 | 19.05 | 300 | 3.4661 | 1.0 | 1.0 |
2.5698 | 38.1 | 600 | 0.6577 | 0.5203 | 0.1466 |
0.6112 | 57.14 | 900 | 0.4048 | 0.3723 | 0.1005 |
0.3826 | 76.19 | 1200 | 0.3778 | 0.3386 | 0.0901 |
0.3168 | 95.24 | 1500 | 0.3691 | 0.3285 | 0.0875 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3