Update README.md
#2
by
kingabzpro
- opened
README.md
CHANGED
@@ -19,10 +19,10 @@ model-index:
|
|
19 |
metrics:
|
20 |
- name: Test WER
|
21 |
type: wer
|
22 |
-
value:
|
23 |
- name: Test CER
|
24 |
type: cer
|
25 |
-
value:
|
26 |
- task:
|
27 |
name: Automatic Speech Recognition
|
28 |
type: automatic-speech-recognition
|
@@ -33,10 +33,10 @@ model-index:
|
|
33 |
metrics:
|
34 |
- name: Test WER
|
35 |
type: wer
|
36 |
-
value:
|
37 |
- name: Test CER
|
38 |
type: cer
|
39 |
-
value:
|
40 |
datasets:
|
41 |
- mozilla-foundation/common_voice_15_0
|
42 |
language:
|
@@ -52,8 +52,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
52 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
53 |
It achieves the following results on the evaluation set:
|
54 |
- Loss: 0.3611
|
55 |
-
- Wer:
|
56 |
-
- Cer:
|
57 |
|
58 |
View the results on Kaggle Notebook: https://www.kaggle.com/code/kingabzpro/wav2vec-2-eval
|
59 |
|
@@ -105,13 +105,13 @@ def evaluate(batch):
|
|
105 |
|
106 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
107 |
|
108 |
-
print("WER: {}".format(wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
109 |
-
print("CER: {}".format(cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
110 |
|
111 |
```
|
112 |
-
**WER:
|
113 |
|
114 |
-
**CER:
|
115 |
|
116 |
### Training hyperparameters
|
117 |
|
|
|
19 |
metrics:
|
20 |
- name: Test WER
|
21 |
type: wer
|
22 |
+
value: 29.34
|
23 |
- name: Test CER
|
24 |
type: cer
|
25 |
+
value: 7.86
|
26 |
- task:
|
27 |
name: Automatic Speech Recognition
|
28 |
type: automatic-speech-recognition
|
|
|
33 |
metrics:
|
34 |
- name: Test WER
|
35 |
type: wer
|
36 |
+
value: 52.09
|
37 |
- name: Test CER
|
38 |
type: cer
|
39 |
+
value: 17.90
|
40 |
datasets:
|
41 |
- mozilla-foundation/common_voice_15_0
|
42 |
language:
|
|
|
52 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
53 |
It achieves the following results on the evaluation set:
|
54 |
- Loss: 0.3611
|
55 |
+
- Wer: 29.92%
|
56 |
+
- Cer: 7.86%
|
57 |
|
58 |
View the results on Kaggle Notebook: https://www.kaggle.com/code/kingabzpro/wav2vec-2-eval
|
59 |
|
|
|
105 |
|
106 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
107 |
|
108 |
+
print("WER: {}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
109 |
+
print("CER: {}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
110 |
|
111 |
```
|
112 |
+
**WER: 52.09850206372026**
|
113 |
|
114 |
+
**CER: 17.902923538230883**
|
115 |
|
116 |
### Training hyperparameters
|
117 |
|