Sandiago21's picture
Update README.md
821b86d
|
raw
history blame
4.04 kB
---
license: other
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- llama
- decapoda-research-13b-hf
- prompt answering
- peft
---
## Model Card for Model ID
This repository contains a LLaMA-13B further fine-tuned model on conversations and question answering prompts.
⚠️ **I used [LLaMA-13B-hf](https://huggingface.co/decapoda-research/llama-13b-hf) as a base model, so this model is for Research purpose only (See the [license](https://huggingface.co/decapoda-research/llama-13b-hf/blob/main/LICENSE))**
## Model Details
### Model Description
The decapoda-research/llama-13b-hf model was finetuned on conversations and question answering prompts.
**Developed by:** [More Information Needed]
**Shared by:** [More Information Needed]
**Model type:** Causal LM
**Language(s) (NLP):** English, multilingual
**License:** Research
**Finetuned from model:** decapoda-research/llama-13b-hf
## Model Sources [optional]
**Repository:** [More Information Needed]
**Paper:** [More Information Needed]
**Demo:** [More Information Needed]
## Uses
The model can be used for prompt answering
### Direct Use
The model can be used for prompt answering
### Downstream Use
Generating text and prompt answering
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Usage
## Creating prompt
The model was trained on the following kind of prompt:
```python
def generate_prompt(instruction: str, input_ctxt: str = None) -> str:
if input_ctxt:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input_ctxt}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
```
## How to Get Started with the Model
Use the code below to get started with the model.
```python
import torch
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM
tokenizer = LlamaTokenizer.from_pretrained("Sandiago21/llama-13b-hf-prompt-answering")
model = LlamaForCausalLM.from_pretrained(
"Sandiago21/llama-13b-hf-prompt-answering",
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
generation_config = GenerationConfig(
temperature=0.2,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
)
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
```
### Example of Usage
```python
instruction = "What is the capital city of Greece and with which countries does Greece border?"
input_ctxt = None # For some tasks, you can provide an input context to help the model generate a better response.
prompt = generate_prompt(instruction, input_ctxt)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
)
response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
print(response)
>>> The capital city of Greece is Athens and it borders Albania, Macedonia, Bulgaria and Turkey.
```
## Training Details
### Training Data
The decapoda-research/llama-13b-hf was finetuned on conversations and question answering data
### Training Procedure
The decapoda-research/llama-13b-hf model was further trained and finetuned on question answering and prompts data for 1 epoch (approximately 10 hours of training on a single GPU)
## Model Architecture and Objective
The model is based on decapoda-research/llama-13b-hf model and finetuned adapters on top of the main model on conversations and question answering data.