Edit model card

Emotion Recognition in Turkish Speech using HuBERT

This HuBERT model is trained on TurEV-DB to achieve speech emotion recognition (SER) in Turkish.

How to use

Requirements

# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!git clone https://github.com/SeaBenSea/HuBERT-SER.git

Prediction

import sys  
sys.path.insert(1, './HuBERT-SER/')
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification
model_name_or_path = "SeaBenSea/hubert-large-turkish-speech-emotion-recognition"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate

model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
    speech_array, _sampling_rate = torchaudio.load(path)
    resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate)
    speech = resampler(speech_array).squeeze().numpy()
    return speech


def predict(path, sampling_rate):
    speech = speech_file_to_array_fn(path, sampling_rate)
    inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
    inputs = {key: inputs[key].to(device) for key in inputs}

    with torch.no_grad():
        logits = model(**inputs).logits

    scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
    outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in
               enumerate(scores)]
    return outputs
path = "../dataset/TurEV/Angry/1157_kz_acik.wav"
outputs = predict(path, sampling_rate)
outputs
[
  {'Emotion': 'Angry', 'Score': '99.8%'},
  {'Emotion': 'Calm', 'Score': '0.0%'},
  {'Emotion': 'Happy', 'Score': '0.1%'},
  {'Emotion': 'Sad', 'Score': '0.1%'}
]

Evaluation

The following tables summarize the scores obtained by model overall and per each class.

Emotions precision recall f1-score accuracy
Angry 0.97 0.99 0.98
Calm 0.89 0.95 0.92
Happy 0.98 0.93 0.95
Sad 0.97 0.93 0.95
Overal 0.95

Questions?

Post a Github issue from HERE.

Downloads last month
377
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using SeaBenSea/hubert-large-turkish-speech-emotion-recognition 1